
Implementation of NWB and Comparison
with Dijkstra and Bellman-Ford

Faculty of Informatics and Mathematics
at the Hochschule München

Masterarbeit
to obtain the academic degree

Master of Science

submitted by

Marcel Hofbauer
born on 07.08.1998 in Munich

degree program: Master Informatic
student ID number: 33381418

in September 2024

First examiner: Prof. Dr. Güdemann Matthias
Second examiner: Prof. Dr. Christoph Böhm

statutory declaration
Hereby I confirm that I have written this thesis independently and only using the sources
and aids indicated by me. Both content and literal citations taken from other sources have
been marked as such. This thesis has not been submitted to any other examination board
in this or a similar form.

date: signature:

abstract
This master thesis provides an in-depth explanation of the implementation of a newly de-
veloped algorithm aimed at solving the classic negative-weight single-source shortest path
(SSSP) problem in near linear time, alongside an evaluation of the implementation. It intro-
duces the first open-source implementation of the NWB algorithm, named after its creators
Nanongkai, Wulff-Nilsen, and Bernstein. The thesis explores the performance of the imple-
mentation and identifies areas for future enhancement. The implementation strictly follows
the methodology outlined in the original research paper and has been tested using a variety
of example graphs. While it produces correct results, the current implementation lacks the
efficiency required for large-scale networks. With further optimizations, this algorithm holds
the potential to solve the SSSP problem involving negative-weight edges in near linear time,
offering a simple yet effective approach.

Contents
statutory declaration . 2
abstract . 3

1 Introduction 5

2 Related work 6

3 Motivation of Master Thesis 7

4 Foundations 8

5 Implementation of NWB 10
5.1 Timer class . 10
5.2 Dijkstra class . 10
5.3 Bellman-Ford class . 11
5.4 NWB algorithm . 11

6 Evaluation and Comparison with Dijkstra and Bellmann-Ford 21

7 Conclusion 27

8 List of Abbreviations 28

4

1 Introduction
The shortest path problem is a fundamental concept in the field of graph theory and com-
puter science. There are different type of shortest path problems, to distinguish from. The
SSSP problem, in which we have to find the shortest paths from a source vertex u to all other
vertices of the graph. The single-destination shortest path problem, in which we have to
find the shortest paths from all vertices in the directed graph to a single destination vertex
v. This can be reduced to the SSSP problem by reversing the arcs in the directed graph.
The all-pairs shortest path problem, in which we have to find the shortest paths between
every pair of vertices u, v in the graph.[1] The k-shortest paths problem, in which all k-th
best shortest paths are computed.[2] That means the best, second best, third best until the
k-th best shortest path will be computed. This is just mentioned for completion purposes.
In this master thesis, we focus our attention on the single-source shortest-path problem.

One of the earliest documented instances of the shortest path problem is related to the
work of Leonard Euler in 1735. Euler’s studies on the Seven Bridges of Königsberg laid
the groundwork for graph theory.[3] The modern formulation of the shortest path problem,
however, can be attributed to the mid-20th century, with contributions from scientists such
as Edsger Dijkstra, who introduced the well-known Dijkstra algorithm in 1956.

Dijkstra’s algorithm is a cornerstone in the study of shortest paths. It utilizes a greedy
approach to efficiently find the shortest path from a single source node to all other nodes
in a weighted graph with non-negative edge weights. The Bellman-Ford algorithm is also
an important algorithm to evade the non-negative edge weight restriction. The algorithm
considers in every iteration all edges to find the shortest path. If the shortest path does not
change in an iteration, then the shortest path has been found. These two remain the most
popular algorithms for teaching and practical application to this day.

5

2 Related work
This chapter provides an overview of the significant works and advancements that have
been made in the area of the shortest path problem. Over the years, many algorithms and
methodologies have been developed to solve various forms of the shortest path problem, each
with its own strengths and applications. This chapter reviews significant contributions and
advances in this field. The foundational algorithms for the shortest path problem were estab-
lished in the mid-20th century, beginning with the Dijkstra and Bellmann-Ford algorithm,
as mentioned in the introduction.(1)

Floyd-Warshall algorithm, another classical approach invented by Robert Floyd and Stephen
Warshall in 1962, computes the shortest paths between all pairs of vertices. This algorithm,
with a time complexity of O(V 3), is optimal for dense graphs and is useful in scenarios re-
quiring complete distance matrices.[4] With the rise of large-scale and real-time applications,
exact algorithms often become computationally impossible. This has led to the development
of heuristic and approximation algorithms.
The A* search algorithm, introduced by Peter Hart, Nils Nilsson, and Bertram Raphael
in 1968, combines the principles of Dijkstra’s algorithm with heuristic methods to improve
efficiency. By incorporating a heuristic function that estimates the cost of reaching the goal.
The algorithm significantly reduces search space, making it ideal for applications in AI and
robotics.[5]
The Johnson´s algorithm is another algorithm, developed by Donald B. Johnson in 1977,
that efficiently solves the all-pairs shortest path problem for sparse graphs. By reweighting
the graph’s edges to eliminate negative weights, we then apply Dijkstra’s algorithm.[6] The
k-shortest path problem, shortly mentioned in 1, requires specialized algorithms to solve.
Algorithms such as Yen’s algorithm from 1971 and Eppstein’s algorithm from 1997 address
this need with varying efficiency and complexity.[7, 8]
Another notable contribution is the work on dynamic shortest path algorithms, where al-
gorithms like the Dynamic Dijkstra proposed by Ramalingam and Reps in 1996 adapt to
changes in the graph, such as edge weight updates or topology modifications.[9] These dy-
namic algorithms are particularly relevant for applications in dynamic and evolving networks,
such as traffic networks.
The shortest path problem has seen significant developments from classical algorithms to
modern approaches that address efficiency and dynamism in large-scale and dynamic graphs.
The applications of these algorithms continue to grow, while classical algorithms provide a
strong foundation. Future research is likely to focus on further enhancing the efficiency and
applicability of these algorithms in ever-more complex and dynamic environments.

6

3 Motivation of Master Thesis
All state-of-the-art algorithm for solving the negative-weight SSSP are largely based on
min-cost flow algorithms and therefore depend on complex optimization methods, dynamic
algebraic techniques, and advanced graph algorithms.[10, 11] This master thesis aims to
present an implementation and evaluation of a tailored negative-weight SSSP algorithm,
designed to address this problem specifically. The focus of this work is to implement an al-
gorithm that operates in near-linear time while maintaining a straightforward and accessible
implementation.
The exploration of this problem has both academic and practical relevance. Academically,
it contributes to a deeper understanding of theoretical foundations such as computational
complexity and algorithm analysis. It also allows for the exploration of the algorithm’s limits
and capabilities, including the handling of special cases like negative cycles. The straight-
forward implementation offers an algorithm that is easy to teach, making it an excellent tool
for illustrating key concepts like low-diameter decomposition.
The practical applications of shortest path algorithms span various domains such as trans-
portation, networking, and robotics. In transportation, shortest path algorithms optimize
route planning and navigation systems, as illustrated in works like „Route Planning in Trans-
portation Networks“ written by Bast, Delling, Goldberg just to name a few.[12] In computer
networking, these algorithms aid in efficient routing protocols to minimize latency and max-
imize throughput.[13] In robotics, algorithms such as Dijkstra’s and A* are integral to path
planning for autonomous systems.[14]
This master thesis focuses on the implementation of the new NWB algorithm, specifically in
the context of graphs without negative cycles. The following chapters will discuss the basic
terminology needed to understand the concepts employed in the algorithm, followed by a de-
tailed description of its implementation. Subsequently, an evaluation of the implementation
will be conducted, including comparisons with the Dijkstra and Bellman-Ford algorithms.
Finally, the thesis will conclude with a discussion of the evaluation results and potential
possibilities for further development.

7

4 Foundations
The following chapter provides an overview of the relevant definitions and concepts necessary
for understanding the subsequent chapters.
Let us start with the definition of a graph and how it is structured. A graph consists of a
set of vertices V and a set of edges E, for which we write G = (V, E). V(G) describes the
set of vertices of graph G and E(G) is the same with the edges. Let n be the size of V(G)
and m the size of E(G). We have an edge e ∈ E and u, v ∈ V . If e connects u and v, we
define e = (u, v). In this case, vertex u and v are said to be adjacent and edge e is said to
be incident with vertices u and v, respectively. Each edge e can be associated with a real
number w(e), which is called its weight. This is called a weighted graph.
In this master thesis, if an edge e = (u, v) exists, we define u as source and v as target.
In graph theory, there exist two types of graph: directed and undirected. In an undirected
graph, if an edge e = (u, v) exists, then the edge e = (v, u) also exists. In the SSSP the most
general setting is with directed graphs and that will be our focus. In a directed graph, edges
are in order. e = (u, v) is different from e = (v, u).[15] A vertex v in V(G) is reachable from
u, if there is a directed (u,v)-path in G. A directed path in a directed graph is a sequence
of edges which joins a sequence of distinct vertices. These edges are all distinct and are
pointing in the same direction.[16] We define distG(u, v) to be the shortest distance from u
to v.[10] The next definitions describe more advanced concepts, which are used in the new
SSSP algorithm. A directed acyclic graph (DAG) is a directed graph without any directed
cycle.[10] A cycle consists of a sequence of adjacent and distinct nodes in a graph. The only
requirement is that the first and last nodes of the cycle sequence must be the same node.[17]
In a weighted graph a cycle C can be negative, if the sum of the weights of the edges in the
graph are negative.[10] A directed graph is strongly connected, if there exists a directed path
between every pair of distinct vertices in both directions. That means, if a path from u to
v exist, then exist a path from v to u. Strongly connected components (SSCs) of a directed
graph G are subgraphs of G, where every subgraph is strongly connected. The neighbors
of a vertex v are all vertices that are adjacent to v. Because they are directed, there is a
distinction of direction. This can be formulated precisely using mathematical notations.

Nin(v) = {u ∈ V (G)|v ̸= u,∃e ∈ E(G) : e = (u, v)} (4.1)
Nout(v) = {u ∈ V (G)|v ̸= u,∃e ∈ E(G) : e = (v, u)} (4.2)

The set of neighbors N(v) is the union of Nin and Nout. The number of edges entering a
vertex v ∈ V is called the in-degree δin(v) of v and the edges exiting v is called out-degree
δout(v). Constant out-degree means that all vertices in a graph have the same number of

8

CHAPTER 4. FOUNDATIONS

outgoing edges. A graph H is a subgraph of G if V(H) is a subset of V(G) and E(H) is a
subset of E(G) such that for all edges e ∈ E(H) with e = (u, v), we have u,v in V(H).
Given a subset V∗ of V(G). The subgraph induced by V∗ is Ginduced(V∗,E∗), where E∗ con-
tains all edges, which connects two vertices in V∗. A price function can be any function
that projects V → Z, where Z is a set of integers, with a weight function wϕ(u, v) =
w(u, v) + ϕ(u) − ϕ(v). Given any graph G = (V, E, w). wB is a weight function defined
as wB(e) = w(e) + B for all negative edges in G. A graph GB

ϕ is a graph with the weight
function wB and a price function ϕ was applied.[10]

9

5 Implementation of NWB
The algorithm is implemented in C++ and utilizes the Boost Graph Library for the graph
representation. When selecting a library for this purpose, I considered three prominent
C++ libraries: Boost Graph Library, LEMON and CGAL. The Boost Graph Library is
designed to provide a comprehensive set of tools for graph data structures and algorithms.
The library is header-only and does not need to be built to be used.[18] LEMON stands for
Library for Efficient Modeling and Optimization in Networks. It is a C++ template library
providing efficient implementations of common data structures and algorithms with focus on
combinatorial optimization tasks.[19] CGAL is an open source software project that provides
easy access to efficient and reliable geometric algorithms in the form of a C++ library.[20]
In the end, I choose the Boost Graph Library for its ease use and extensive documentation,
which facilitated the implementation of the algorithm.
The „main.cpp“ file contains a function named get_graph, which accepts a number and a file
path as arguments. The file path, which can be passed as a parameter to the main function,
should point to a .gr-file. This file must follow a specific structure: each line should specify
an edge with a source, target, and weight, prefixed by the letter „a“ to denote an edge. The
function returns the graph as specified in the .gr-file, provided the file path and structure
are correct. If the file path is not provided, the function will select one of the example
graphs that are hard-coded into the program. Currently, there are 15 such example graphs
available. The function throws an error, if the number does not select any of the graphs.

5.1 Timer class
The Timer class is designed for performance benchmarking. Upon instantiation of a Timer
object, the current time is recorded. When the object is subsequently destroyed, the recorded
start time is subtracted from the end time, yielding the duration for which the object ex-
isted. The method of benchmarking with the Timer class will be explained in the evaluation
chapter.(6)

5.2 Dijkstra class
The Dijkstra class is a straightforward implementation that utilizes the Boost Graph Library
to compute the Dijkstra algorithm. The class inputs a graph into a function provided by
the library. To display the shortest path from a specified source to all vertices, the function
iterates over each vertex, storing the predecessors of each node until the source is reached.
The vertices are then iterated in reverse order to reconstruct the shortest path.[21] The

10

CHAPTER 5. IMPLEMENTATION OF NWB

algorithm maintains a set of visited vertices and a set of unvisited vertices. It starts at the
source vertex and iteratively selects the unvisited vertex with the smallest distance from the
source. Then it visits the neighbors of this vertex and updates their distances if a shorter
path is found. This process continues until the destination vertex is reached, or all reachable
vertices have been visited. The Dijkstra algorithm does not work with negative edge weights.
If an array is used to store distances and vertices, the time complexity is O(V 2). This can
be reduced to O(E ∗ log2(V)) by using priority_queue to access the vertex with the current
smallest distance.[22] According to the Boost Graph Library website, the time complexity
of their implementation is O(V ∗ log2(V)).[23]

5.3 Bellman-Ford class
The Bellman-Ford class is, similar to the Dijkstra class, a simple implementation with Boost
Graph Library. The graph is passed into a function provided by the library, which returns a
boolean value. If it returns true, the shortest paths from one vertex to all others can easily
be displayed. If it returns false, it indicates the presence of a negative cycle, which is then
reported.[24] The Bellman-Ford algorithm computes the shortest paths from a single source
to all other vertices in a graph, even when some edges have negative weights. It initializes the
distance of the source as 0 and to all other vertices as infinity. Then, it iterates over each edge
repeatedly over n-1 iterations, updating the shortest known distances. After these iterations,
the algorithm checks for any negative weight cycles by attempting one more update of the
distances. If a shorter path is found, there is a negative cycle. The final result is either the
shortest paths or the detection of a negative weight cycle. As an optimization the algorithm
ends earlier, if in an iteration was nothing changed. The time complexity of Bellman-Ford is
O(n*m) on average and in the best case O(m). O(m) is achieved if there are no distances to
update.[25] In the Boost Graph Library, Bellman-Ford has the mentioned time complexity.
[26]

5.4 NWB algorithm
The concept behind the new SSSP algorithm involves iteratively transforming negative edges
within the graph into positive edges. This transformation is carried out without altering the
shortest path in the graph, thereby rendering the graph suitable for the Dijkstra algorithm.
This is achieved by calculating the appropriate price functions. To demonstrate that the
shortest path Px,y remains unchanged after applying the price function to a graph, consider
the following example:

Figure 5.1: Proof price function[27]

11

CHAPTER 5. IMPLEMENTATION OF NWB

Applying the definition of the price function from the last chapter 4 to each edge reveals
that most alterations to a path cancel each other out, yielding the result: wϕ(Px,y) =
w(Px,y) + ϕ(x) − ϕ(y) for every path x, y ∈ V .

To calculate the correct price functions, the algorithm employs two main functions: SP-
main and ScaleDown. We are using the following graph to better illustrate the different
steps of the functions:

0

1

7
3

7

4

10

9

-1

-1

4

2

2
-1

6

3

-1

-1

4
8

Figure 5.2: Input Graph
The SPmain function accepts the original input graph and a source vertex as its pri-

mary input. Additionally, it receives the names and the number of vertices, although these
parameters are included only for convenience. The graph must fulfill three conditions:

(a) w(e) ≥ −1 for all e ∈ E

(b) each vertex must have constant out-degree (4) and

(c) the graph must be free of negative weight cycles.
Initially, the algorithm constructs a graph, denoted as G by doubling the edge weights and
rounding up 2n to the nearest power of 2, which is stored in a variable named B, to ensure
that all values remain integral. The graph would look like this:

0

1

14
3

14

4

20

18

-2

-2

8

4

2
-2

12

6

-2

-2

8
16

Figure 5.3: doubled weight graph

12

CHAPTER 5. IMPLEMENTATION OF NWB

Iteratively, ScaleDown will be called until a price function ϕt is obtained, such that wϕt ≥
−1 holds for all edges. In the final step, the algorithm generates a modified graph G∗ with
the weight function defined as w∗(e) = wϕt(e) + 1. This is achieved by first transforming
the input graph using wϕt , followed by a transformation with a price function wϕ1 , where
wϕ1 consists only of ones. The Dijkstra algorithm is then executed on G∗ to calculate the
shortest paths. A convenient shortcut has been implemented. If the graph lacks negative
edges, the Dijkstra algorithm can be applied directly.[10]

The ScaleDown function has three inputs: the graph, which does not contain a negative
cycle, ∆ and B. The input requirements are as follows:

(a) B is a positive integer, the weights are integral and wϕt ≥ −2B for all edges

(b) For every v ∈ V there is a shortest sv-path in GB
s with at most ∆ negative edges

(c) All vertices in G have constant out-degree

GB
s is a graph with weight function wB = wG + B, then added a dummy source s. Further

explanation comes up in chapter 5.4. Upon satisfying the specified requirements, the algo-
rithm produces an integral price function ϕ such that wϕt ≥ −B for all edges holds.[10] The
ScaleDown procedure can be described into approximately four phases. Prior to initiating
these phases, a preliminary check is performed to verify whether ∆ ≥ 2. If this condition is
satisfied, we set ϕ2 = 0 and proceed directly to phase 3. Otherwise, if the condition is not
met, we proceed by defining d = ∆/2 and constructing the graph GB

≥0. In this graph, the
edge weights are redefined as wB

≥0(e) = max{0, wB(e)} for all edges e ∈ E. The graph GB
≥0

is needed for the Low-Diameter Decomposition (LDD) process.

Phase 0: Creating strongly connected components (SCCs) with weak diameter

To create SCCs with weak diameter, we employ LDD. The decomposition of a graph is a
list of subgraphs such that each edge appears in exactly one subgraph in the list.[28] This
method guarantees to return a set of edges Erem, such that each SCC of G \ Erem has
weak diameter at most D. That means that if u, v are in the same SCC, then the distance
distG(u, v) between u and v is at most D.
LDD(G, D) operates exclusively on graphs with non-negative edge weights, denoted as GB

≥0,
and aims to achieve a diameter D to equal to dB.

13

CHAPTER 5. IMPLEMENTATION OF NWB

Figure 5.4: GB
≥0

It is easy to see, by comparing 5.3 with 5.4, that all negative edges were set to 0 while the
other edges remained the same.
Before the algorithm starts, we make a copy of the G into G0. The LDD runs on G. LDD con-
sists of three important phases. In Phase 1, all vertices are categorized as in-light, out-light,
or heavy. For every v ∈ V , we compute BallinG (v,R) and Ballout

G (v,R) with radius R = D/4.
We define Ballout

G (v,R) = {u ∈ V |dist(v, u) ≤ R}, BallinG (v,R) = {u ∈ V |dist(u, v) ≤ R},
alongside a vector S containing k randomly selected vertices from the graph. Here, k is
defined as k = cln(n), where c is a large constant.
At this stage, I implemented two different methods to mark the vertices. First, we compute
the intersection of S with BallinG (v,D/4) and Ballout

G (v,D/4) and verify for each vertex if
the cardinal number of the intersection is less than 0.6k. This marking approach ensures,
with high probability, that if a vertex v is marked as in-light, then the cardinality of the
ball satisfies |BallinG (v,D/4)| ≤ 0.7n. A similar condition applies to out-light marked ver-
tices. The remaining vertices are marked as heavy, ensuring |BallinG (v,D/4)| > 0.5n and
|Ballout

G (v,D/4)| > 0.5n with high probability. The second method involves directly com-
puting the cardinal number of BallinG (v,D/4) and Ballout

G (v,D/4) by constructing the balls
and taking their sizes. This approach simplifies the process as it merely requires iterating
over the graph to create the balls for each vertex, without the need to compute the intersec-
tion if a vertex was not included in S. I choose the second method to use for the evaluation,
because it does not need the computation of the intersection with S which makes it the faster
approach.
I focused on optimizing this function due to the performance analysis discussed in the next
chapter. The initial approach involved recursively iterating over the graph while reducing
the radius by the weight of the edges with each recursive call. Let’s take the creation of
Ballout

G as an example. We start by adding the initial vertex to the ball. Then, we iterate
over all outgoing edges from this vertex, extracting the target and its corresponding weight.
If the weight is less than or equal to the radius, we recursively call the function with the
updated radius = radius−weight on the target vertex. When the edge’s weight exceeds the
remaining radius, we reach the end of the ball and return the result. To avoid duplicates, we
check if the vertices in the returned ball are already included in the current ball. The list,
which recorders the visited vertices, is a global variable. After finishing the computation the

14

CHAPTER 5. IMPLEMENTATION OF NWB

list gets emptied. The creation of BallinG follows the same logic, except that the recursive
calls are made using the source vertices and iterating over incoming edges. Unfortunately,
after testing this approach, it fails to detect a shorter path if the path includes outgoing
edges for BallinG or ingoing edges for Ballout

G . This issue arises because the current method
does not account for the direction of the edges when calculating the balls, which leads to
incomplete or incorrect paths being identified.
The second approach involved using Dijkstra’s algorithm to find the shortest paths from a
single vertex to the others. We add every vertex whose distance is less than or equal to the ra-
dius. This approach works for Ballout

G . For BallinG , we reverse the graph, a function provided
by the Boost Graph Library, and apply the same procedure. I incorporated multithreading
to accelerate the algorithm and allowing multiple balls to be calculated simultaneously. The
second approach is used for the evaluation, because it is slightly faster. The multithreading
is not considered, because it does not improve the computation speed.
The second phase carves out balls, which have as center a not heavy marked vertex. We
start by sampling a radius Rv from the geometric distribution. The geometric distribution
Geo(p) is the probability distribution of the number X of independent events executed,
until success was reached.[10] The probability is p = min{1, 80log2(n)/D}. According
to an open paper on Low-Diameter Decomposition, published from one of the main au-
thor of the original paper, Nanongkai Danupon, Rv has an upper limit of D/4.[29] This
is checked after generating Rv. Unfortunately, it is quite difficult to choose randomly a
vertex from a given graph with the Boost Graph Library. The vertex v is drawn from a
uniform distribution in range from 0 to |V (G)|. Vertex v is checked if it is marked and is
still in the graph. If both are true, we compute Ball∗(v,Rv). Now we can compute the
boundary edges of Ball∗(v,Rv), which are part of Erem. We define boundary(Ballout

G (v,R))
= {(x, y) ∈ E | x ∈ Ballout

G (v,R) ∧ y /∈ Ballout
G (v,R)} and boundary(BallinG (v,R)) =

{(x, y) ∈ E | x /∈ BallinG (v,R) ∧ y ∈ BallinG (v,R)}.[10] The function iterates over the graph
and adjusts the marking to the correct definition accordingly. The algorithm may terminate
at this point if Ball∗(v,Rv) > 0.7n is true, returning all edges in the graph as Erem. Other-
wise, we recursively call the LDD on a subgraph containing only the vertices and edges from
Ball∗(v,Rv) with diameter D.

0 10
8

Figure 5.5: Graph created by a ball
The figure 5.5 gives an example of a graph created by a ball with V = {0, 1}, 0 as center and
a diameter D = 8. Through this process, we obtain Erecurse, which becomes part of Erem.
The creation of the subgraph in 5.5 presents some problems. For example, when adding the
edge (3, 4), the Boost Graph Library adds the edge along with every vertex up to 4. In most
cases, this behavior is not required. Instead, it is necessary to first add all vertices from the

15

CHAPTER 5. IMPLEMENTATION OF NWB

ball, followed by adding edges where both the source and target vertices are within the ball.
A drawback of this approach is that the vertex indices become incorrect. The original index
must be stored in the graph property „vertex_color“ . Every edge added to Erem must be
converted to use the „vertex_color“ as the new index.

The last step of phase 2 involves removing Ball∗(v,Rv) from the graph. The removal of
a vertex automatically decreases the index by 1. This change is tracked by a variable and
accounted for if the ball contains more than one vertex.
In the final phase, called „Clean Up“, we check if the remaining vertices have weak diam-
eter in G0. We select an arbitrary vertex v in G and check BallinG0(v,D/2) ⊉ V (G) or
Ballout

G0 (v,D/2) ⊉ V (G). If either condition holds, the edges E(G) are added to Erem. Oth-
erwise, the Erem obtained this far is returned as the result. After obtaining Erem from our
LDD, we can create a graph without Erem, denoted by G \ Erem.

1 0
18

4

10

2-1
-1

3

4

-1

Figure 5.6: G \ Erem

The randomization of LDD can produce different sets of Erem and consequently alter G \
Erem. Finally, we compute the SCCs from G\Erem using the Boost Graph Library function
„strongly_connected_component“. These SCCs are labeled as V1, V2, and so on.

Phase 1: Make edges inside SCCs non-negative

We construct a graph H that contains only the edges within the SCCs, using G \Erem and
the SCCs from phase 0. To compute H, we start by copying G\Erem and then remove every
edge that does not connect two vertices within the same SCC. After removal of these edges,
we iterate over H and eliminate any vertex whose in-degree plus out-degree is zero. This
step is necessary to ensure that the graph does not contain vertices that are disconnected.
A vertex is disconnected, if there exist no path to any other vertex in the graph.
If we look at figure 5.6, it is evident that there are no SCCs in the graph. According to
the definition, the graph H is empty. If it were not empty, it would be necessary to reindex
the graph, as mentioned in 5.4. To obtain the first price function ϕ1, we recursively call
ScaleDown with H, ∆/2 and B. The price function ϕ1 makes all edges inside SCCs non-
negative.

16

CHAPTER 5. IMPLEMENTATION OF NWB

Phase 2: Make the edges between SCCs non-negative

We compute the procedure FixDAGEdges, which produces a price function that ensures
non-negative edges between SCCs. The algorithm takes as input a graph G and a partition
P , which contains the SCCs, such that

1. for every i, the induced subgraph G[Vi] contains no negative weight edges and

2. when we contract every Vi into a vertex, the resulting graph is a DAG.[10]

First, we construct the required graph. We take GB, apply ϕ1 to create GB
ϕ1 (4) and remov-

ing Erem from it, which concludes into the graph GB
ϕ1 \ Erem. This graph fulfills the first

requirement, because of the transformation with ϕ1.(5.4)
For the second requirement, we contract every SCC into one node. This automatically re-
sults into a DAG.
The procedure for contracting every SCC into a single vertex is straightforward. As men-
tioned in Chapter 5.4, the Boost Graph Library provides a method for identifying SCCs. If
the graph only contains one SCC, then we add a vertex and return the contracted graph. If
the graph contains multiple SCCs, we iterate over the edges of the graph, checking whether
the source and target vertices belong to the same SCC. We add an edge only if the source
and target are in different SCC, retaining the original edge weight.
The partition P is a vector that stores V1, V2, etc. From the contraction process, we determine
which vertex belongs to which component and store this information in a vector. Finally,
we can call FixDAGEdges with the contracted graph and the partition P = {V1, V2, ...}.

3 0
18

2

10

1-1
-1

4

4

-1

Figure 5.7: transformed and contracted graph
The algorithm is relatively simple. We iterate in a simple loop over the vertices in topo-

logical order and set ϕ(vi) for each vi ∈ Vi, if the incoming edge to Vi has a negative weight.
To iterate over the vertices in topological order, we must relabel the SCCs in P , such that
for any edge (u, v) ∈ E with u ∈ Vi and v ∈ Vj, it holds i ≤ j.[10] This task is simplified
by the Boost Graph Library´s „topological_sort“ function, which returns the vertices in
reverse topological order. To obtain the correct order, we iterate from the end, adding the
vertices in the proper sequence. The graph is initially oriented backwards, so we correct this
by iterating over the edges e = (u, v) and adding them correctly to a new graph. If u < v,
then add the edge (u, v); otherwise, we add the edge (v, u).

17

CHAPTER 5. IMPLEMENTATION OF NWB

0 3
18

1

-1

2

10

4

4
-1

-1

Figure 5.8: relabeled graph
We then iterate over each partition, starting with the second one, identifying the most

negative edge weight, denoted uj, entering the partition and accumulating these weights into
a variable Mj. It is sufficient to begin with the second partition, due to the topological sort
and the DAG, there are no edges entering the first partition. Consequently, M1 and u1 are
set to 0. Once uj is identified and added to Mj, we assign ϕ(v) = Mj for every v in the
current partition.
The output is a price function ψ, that makes all edges in between SCCs non-negative. To
acquire a price function ϕ2, which satisfies the requirements of Phase 1 and Phase 2, we add
ϕ1 and ψ element-wise.

Phase 3: Make the edges in GB non-negative

We add a dummy source s to GB, forming the graph GB
s . A dummy source s is a vertex that

has an edge with weight zero to every other vertex in the graph and no incoming edges.[10]
After adding s, we define the price function ϕ2(s) = 0. At this point, we apply ϕ2 to GB

s .
It is crucial to follow this order of operations: first, add s, then transform the graph using
ϕ2. If we first apply ϕ2, then adding s, the edges of s would always be zero and the price
function would contain only zeros.

0

1
14

3

14

4
20

18

-1

10

8

4

2
-1

12

6

-1

-1

8 16

5

0

0

0

0

0

Figure 5.9: added dummy source

18

CHAPTER 5. IMPLEMENTATION OF NWB

0

1
12

3

11

4
19

20

-2

11

9

6

2
1

11

4

-1

0

7 14

5

3

1

0

2

2

Figure 5.10: transformed with ϕ2

With the preparations completed, we can call the ElimNeg algorithm on the transformed
GB

s with the dummy source s. All necessary conditions are satisfied: all vertices, except
for s, have a constant out-degree and s can reach all vertices in the graph. As before, the
presence of a negative weight cycle is not possible. If such a cycle existed, the algorithm
would not terminate.
Initially, we set the distance of s, denoted d(s), to zero, and for all other vertex, we set
d(v) = ∞. We then initialize a queue Q as a vector and add s to it. Additionally, we need
a vector to track the marked vertices.
Within a while loop, we alternate between a Dijkstra and Bellman-Ford phases until Q is
empty. In the Dijkstra phase, we look for the vertex v with the minimum distance d(v) and
mark it. For each outgoing edge (v, x) ∈ E ≤ Eneg(G), we check if there is a shorter distance
to x using d(v) + w(v, x) < d(x). If this condition holds and x /∈ Q, we add x to Q and
update d(x) with the shorter distance. Finally, we extract v from Q.
During the Bellman-Ford phase, we iterate over the outgoing edges (v, x) ∈ E(G) from the
marked vertices. While it suffices to consider only (v, x) ∈ Eneg(G), as pointed out in 5.4,
it is challenging to create subgraphs, so we iterate over all outgoing edges from vertex v.
We perform the same final check as in the Dijkstra phase: if a shorter distance exists and
x is not in Q, we add x to Q and update the distance. Once all outgoing edges from v are
checked, we unmark v.
When Q is empty, we have determined the correct distances d and can return them as a
price function.
I implemented the same procedure using a priority queue as the data structure. A priority
queue is a type of queue in which each element is associated with a priority and ordered
accordingly.[30] The priority queue is modeled as a min-heap, where the smallest element
is at the top. The priority queue stores pairs of vertices and their current distances d(v),
ordering the pairs by minimum distance. This makes extracting the minimum distance con-
stant in time complexity, although we still need a set to check if vertex x is inside the queue,

19

CHAPTER 5. IMPLEMENTATION OF NWB

as the priority queue structure does not facilitate this check easily. For the results I used a
vector to store the distances. The priority_queue did not run faster, because of the check if
a vertex is inside the queue.
After adding ϕ2 and the calculated distances, we created a price function which makes the
edges in GB non-negative.

0

1

4
3

5

4

8

12

0

0

3

2

2
0

5

3

0

0

2
7

Figure 5.11: transformed with ϕt

0

1

4
3

5

4

8

12

0

0

3

2

2
0

5

3

0

0

2
7

Figure 5.12: transformed with ϕt + 1
As depicted in figure 5.11, both graphs no longer contain any negative edges and are

now suitable for use as input for Dijkstra’s algorithm. The paper argues that since we are
working with a scaled graph resulting from the doubling of the input graph, adding one is
insignificant.[10] The pictures support this claim, as they are identical.

20

6 Evaluation and Comparison with
Dijkstra and Bellmann-Ford

This chapter presents an explanation on the correctness and robustness of the implemented
algorithm. Furthermore, an analysis of the performance of the three algorithm and a com-
parison will be discussed.

The correctness of the new NWB algorithm was verified through two approaches. First,
small graphs with manually computable shortest paths were used, and the algorithm’s out-
put was compared against these known results. Second, the algorithm was tested against
established implementations like Dijkstra’s algorithm for graphs with positive edges and
Bellman-Ford for graphs with negative edges. In both cases, the outputs were consistent,
confirming that the shortest paths were correctly identified.
To test the robustness of the implementation, a variety of graphs were used, including empty
graphs, disconnected graphs, graphs with cycles, single-vertex graphs, and graphs with neg-
ative edge weights. These tests ensured that the algorithm could handle different edge cases,
which can often lead to incorrect outputs in other algorithms. Notably, the Dijkstra al-
gorithm from the Boost Graph Library, which the NWB implementation relies on, cannot
process empty graphs. As a result, NWB also cannot handle empty graphs. However, for
all other cases, the algorithm ran successfully, producing correct results. The algorithms
are computed on a laptop with an Intel Core i7-8550U CPU at 1.8 GHz. As mentioned in
chapter 5.1, upon instantiation of a Timer object, the current time is recorded and the dura-
tion calculated after destruction of it. This is used to compare the runtime of the Dijkstra,
Bellman-Ford and NWB algorithm combined with a time complexity analysis. Furthermore,
a benchmarking of the use of CPU time for each function will be done.

21

CHAPTER 6. EVALUATION AND COMPARISON WITH DIJKSTRA AND
BELLMANN-FORD

To get a better result, we compute a specified amount of runs and take the average of the
durations. Aside from the first entry of the table, which is a graph I used to develop and
test the new algorithm, the benchmarking graphs are from the 9th DIMACS Implementation
Challenge for shortest paths.[31] For the analysis we used, the graphs depicted in this table:

Graph vertices edges
Graph from 5.2 5 15
New York graph 264,346 733,846

COL graph 435,666 1,057,066
FLA graph 1,070,376 2,712,798
CAL graph 1,890,815 4,657,742
W graph 6,262,104 15,248,146

Table 6.1: Properties of used graphs for analysis

Graph pairs vertices edges
New York/COL 1.65 1.44

COL/FAL 2.46 2.57
FAL/CAL 1.77 1.72
CAL/W 3.31 3.27

Table 6.2: Ratio of vertices and edges of some graphs

The example graph from the previous chapter is used to demonstrate the runtime of the
NWB algorithm on a graph with negative edges. Additionally, other graphs are utilized to
conduct a time comparison and observe how the runtime increases with larger graph sizes.
These graphs were selected due to their ratios of vertices or edges, which mostly fall between
1.5 and 2.5 times that of the smaller graphs. The exception is the W graph, which is more
than three times larger than the CAL graph. The New York graph represents the network
in New York, the COL graph represents Colorado, FLA represents Florida, CAL represents
California and Nevada and W represents Western USA. These ratios of vertices and edges
provide useful data for a time complexity analysis of the NWB algorithm’s performance as
graph size increases.

22

CHAPTER 6. EVALUATION AND COMPARISON WITH DIJKSTRA AND
BELLMANN-FORD

The results in the following table were achieved by running the algorithm 100 times, ex-
cept for the W graph from Bellman-Ford. There were only 5 runs, due to the long runtime.
The time is in milliseconds.

Graph Dijkstra Bellman-Ford NWB
Graph from 5.2 - 0.01 0.68

New York graph (positive edges) 58.39 6,418.0 303.6
COL graph 96.07 14,243.7 558.03
FLA graph 449.9 59,085.4 1471.78
CAL graph 1001.97 293,760 2,942.47
W graph 2,315.51 760,532 18,329.8

New York graph (negative edges) - 6,445.45 -

Table 6.3: Runtime from algorithm on different graphs

Graph pairs Dijkstra Bellman-Ford NWB
New York/COL 1.64 2.22 1.84

COL/FLA 4.68 4.15 2.64
FLA/CAL 2.23 4.97 2
CAL/W 2.31 2.59 6.23

Table 6.4: Time ratio of graph pairs

First, it is quite easy to see the bigger graphs are the longer the runtime. As expected,
the Dijkstra algorithm is the fastest one. It runs nearly 110 times faster than Bellman-Ford
on the New York graph and on the W graph even 328 times faster. As long as the graph
only contains positive edges, the NWB algorithm runs much faster than the Bellman-Ford
algorithm. This is because before all the subroutines starting, which are explained in chap-
ter 5, the graph is checked if it contains at least one negative edge. If not then we just call
Dijkstra. This is sufficient, because all subroutines making parts of the graph non-negative.
If everything is positive, the subroutines only compute price functions that do not change
the graph. Rather unexpected are the long runtimes of the NWB algorithm on the bigger
graphs. If we take the W graph as an example. It takes roughly 2400 ms to execute the
Dijkstra algorithm. That means, that around 16000 ms is needed to iterate through the
graph and check for a negative edge. On small graphs, such as the first in the table, the
NWB finishes and produces the correct output, further proving the correctness even with
negative edges. Unfortunately, the implementation is not efficient enough to finish on the
smallest graph of the DIMACS Implementation Challenge. This is shown by the first row
of the table 6.3. It takes 68 times the time of the Bellman-Ford algorithm to complete,
if all subroutines are used. To evaluate the subroutines on a bigger graph, we randomly
change one edge weight in the graph to -1. In the last row this was applied to the smallest

23

CHAPTER 6. EVALUATION AND COMPARISON WITH DIJKSTRA AND
BELLMANN-FORD

graph from the challenge and after 3 hours the algorithm did not stop. It was expected that
Bellman-Ford runs nearly with the same time, regardless of the existence of negative edges,
because the time complexity is not tied to the signs of the edges either on the vertices and
edges. This behavior is evident when comparing the runtime of the algorithm on the New
York graph with both positive and negative edges.
This means that for the analysis of the time complexity, we focus exclusively on the case with
positive edge weights. Another factor to consider is the space complexity, which involves the
amount of memory required to store the data structures, distances, and other necessary ele-
ments for the algorithm to run. However, this factor can be omitted from the comparison, as
all algorithms have similar space complexity, making it irrelevant to the analysis. Therefore,
the focus remains on time complexity when differentiating their performance.[22, 25] This
analysis becomes somewhat complex because the actual runtime depends on several factors,
such as the implementation, optimizations, and the inherent complexity of the algorithm.
Additionally, while the big-O notation provides an upper bound on the time complexity, it
typically omits constant factors tied to the size of the graph, such as n and m. In practice,
these constants can be significant, meaning that even algorithms with the same theoretical
time complexity can have different actual runtimes depending on these hidden factors.
Let’s first examine the Bellman-Ford algorithm. The first two graph pairs exhibit behavior
within the expected time complexity. If we analyze the ratio of vertices and edges in table
6.2, for example, in the graph pair New York/COL, there are 1.65 times more vertices and
1.44 times more edges, while the time ratio, as shown in 6.4, is 2.22. Ideally, this ratio would
be 2.38, but this discrepancy is within an acceptable range, as the algorithm might have
terminated earlier, as explained in 5.3. The graph pair CAL/W is exceptional fast. This
can be attributed to the W graph requiring considerably fewer iterations, as the CLA graph,
despite being much larger. Conversely, the FLA/CAL graph pair, despite the CAL graph
having only 1.77 times more vertices and 1.72 times more edges than the FLA graph, ex-
hibits prolonged execution time. This likely stems from the same reason as with the CAL/W
graph pair. The FLA graph requires substantially more time to complete, whereas the CAL
graph likely terminates with an average number of iterations.
When analyzing the time ratios of the Dijkstra algorithm, the first three graph pairs exhibit
significantly slower performance than expected based on time complexity. One possible ex-
planation is hardware limitations, which may prevent the computations from being processed
efficiently. Another reason could be that the calculation of the shortest path approaches a
near worst-case scenario. Dijkstra’s algorithm is a greedy algorithm, which always selects
the locally smallest distance to the next vertex. However, this local optimization can result
in unnecessary exploration of suboptimal paths. Conversely, the CAL/W graph pair per-
forms much faster than anticipated, with a time ratio of 2.31 compared to the expected 5.72.
This discrepancy could be attributed to the fact that fewer unnecessary path explorations
occurred in this case, allowing the algorithm to perform more efficiently.
In the original research paper [10], the time complexity is calculated as O(m ∗ log8

2(n) ∗
log2(W)), where W is the smallest number which satisfies w(e) ≥ −W . For this comparison,
I decided to use the time complexity O(n ∗ log2(n) +m). This choice is justified by the fact
that the algorithm, in this context, does not employ the subroutines described in the paper.

24

CHAPTER 6. EVALUATION AND COMPARISON WITH DIJKSTRA AND
BELLMANN-FORD

Given that all edges are positive, the algorithm iterates over the edges with a complexity of
O(m) and then applies Dijkstra’s algorithm with a complexity of O(n ∗ log2(n)).
Using this time complexity, we observe that all graph pairs perform significantly faster than
anticipated. Since the algorithm first iterates over the graph and then runs Dijkstra’s algo-
rithm, it would be expected that the overall runtime of the NWB algorithm would be always
slower. This is indeed reflected in the actual runtimes, as shown in table 6.3. However, based
on the time complexity, we would have predicted much longer runtimes for NWB, which the
graph pairs COL/FLA and FLA/CAL are disproven. The most plausible explanation for
this behavior is that the C++ compiler is applying optimizations during the computation.
The compiler might optimize loops to execute iterations simultaneously, if the operations
are independent. For example, when iterating over the graph to check for negative edges,
parts of the Dijkstra algorithm could start running simultaneously due to loop unrolling or
instruction pipelining.
For analyzing the CPU time usage of the functions, we use Intel Vtune Profiler 2024.2. This
tool allows analyzing application, system performance, and more performance metrics on
Windows. The profiler is multilingual, supporting C, C++, C#, Python and other pro-
gramming languages.[32]
The following performance analysis ran for 1 and a half hours.

Figure 6.1: Performance analysis NWB
In the benchmark analysis shown in figure 6.1, it is clear that the ball creation process con-

sumes the most time. This is expected, especially for large graphs, as the radius of the balls
increases with the graph’s size. As discussed in chapter 5.4, two different approaches were
implemented to create these balls. As mentioned in the implementation, the first method
does not work. Aside from that, it is computationally expensive, both in terms of memory
and time, because the balls for larger graphs are substantial. Each recursive call requires
storing the previously calculated balls, creating new variables to store target and weight,
leading to significant memory usage. After approximately 3.5 hours, this approach encoun-
tered a "bad allocation" error, which occurs when a function fails to allocate the necessary
storage.[33]
The second approach employed the Dijkstra algorithm to compute the distances from the
ball’s center, adding each vertex within the radius. This reduced the computation time from
0.78 ms to 0.68 ms, but the process still did not complete after approximately 3 hours or
through errors. To estimate the time required for this approach, we can use the New York

25

CHAPTER 6. EVALUATION AND COMPARISON WITH DIJKSTRA AND
BELLMANN-FORD

graph as an example, where running the Dijkstra algorithm takes an average of 58 ms. Given
this and considering the time required to build the ball by comparing distances, which are
estimated at 0.08 s per ball creation, it would take around 352 minutes to compute all balls,
based on 264,346 vertices.
To improve performance, I attempted to introduce multithreading, enabling the computation
of multiple vertices simultaneously. However, this did not lead to a significant improvement.
The hardware provides 8 logical processors, which theoretically should reduce the compu-
tation time to approximately 44 minutes for all balls. This estimation is theoretical. The
program still does not finish. Another potential optimization could involve using a priority
queue to find the smallest element more efficiently. However, this was not pursued further
because the algorithm’s bottleneck remained in the ball creation process. Further investiga-
tion and testing are needed to explore the optimization of functions after the ball creation
process.

26

7 Conclusion
This master thesis introduces the significance of the shortest path problem, presents the
implementation of a new algorithm designed to solve it, and evaluates the performance of
this implementation in comparison to two well-established algorithms. Theoretical analysis
suggests that Dijkstra’s algorithm should be the fastest, followed by the NWB algorithm, and
finally the Bellman-Ford algorithm. This holds true for graphs with only positive edges, but
the scenario changes when the graph contains at least one negative edge. In cases involving
negative edges, the algorithm needs to first transform the graph to ensure all weights are non-
negative, allowing Dijkstra’s algorithm to be applied. The most time-consuming component
of the new algorithm is the creation of the balls for the LDD. Therefore, enhancing the
performance of this process is crucial to improving the overall speed of the algorithm.

In my limited timeframe, I was unable to provide an implementation that conclusively
demonstrates the theoretically faster computation time of NWB due to the years of opti-
mization embedded within the Boost Graph Library.

Future work should focus on further accelerating the ball creation process. The eval-
uation chapter discusses several potential approaches, some of which have been partially
implemented, such as recursively creating the balls, utilizing multithreading to parallelize
the procedure, or applying Dijkstra’s algorithm to determine distances from a vertex. Ad-
ditionally, improvements to functions like ElimNeg could be achieved by incorporating a
priority queue. Once performance bottlenecks are addressed, the NWB algorithm could also
be expanded to handle negative cycles. This potential enhancement, mentioned in the pa-
per, could be implemented after performance improvements are made, making the algorithm
even more robust and versatile for a broader range of applications.

This master thesis delivers the first open-source implementation of the NWB algorithm,
which not only computes the correct output, but also offers a detailed explanation of the im-
plementation’s workings and the expected output of each component. The implementation
posed several practical challenges, such as handling the relabeling of graphs or contracting
strongly connected components while tracking which vertex corresponds to which SCC. Ad-
ditionally, it was important to maintain the constraints on the edge weights, ensuring that
the most negative edge weight is -1. If this condition is not met, it could compromise the
reliability of the algorithm.

In conclusion, the primary objective of this thesis, to provide a simple yet effective algo-
rithm specifically tailored for the SSSP problem, has been achieved. This algorithm, with
its potential for near-linear time complexity, holds practical utility and, due to its simplicity,
offers significant academic value for teaching purposes.

27

8 List of Abbreviations
SSSP single-source shortest path
DAG directed acyclic graph
SCC strongly connected component
LDD Low-Diameter Decomposition

28

Bibliography
[1] Schrijver, Alexander: On the history of the shortest path problem.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
6eb38c11c7ce6d0711483078a969bf82b83eff9f

[2] Pan, Tong ; Pun-Cheng, Shuk C.: A Discussion on the Evolution of the Pathfind-
ing Algorithms. (2020). http://dx.doi.org/10.20944/preprints202008.0627.v1. –
DOI 10.20944/preprints202008.0627.v1

[3] Euler, Leonhard ; Velminski, Wladimir: Leonhard Euler, die Geburt der Graphen-
theorie: Ausgewählte Schriften von der Topologie zum Sodoku. Berlin : Kulturverl.
Kadmos, 2009. – ISBN 3865990568

[4] Floyd, Robert W.: Algorithm 97: Shortest path. In: Communications of the
ACM 5 (1962), Nr. 6, S. 345. http://dx.doi.org/10.1145/367766.368168. – DOI
10.1145/367766.368168. – ISSN 0001–0782

[5] A. Goldberg ; Chris Harrelson: Computing the shortest path:
A search meets graph theory. In: ACM-SIAM Symposium on Dis-
crete Algorithms (2005). https://www.semanticscholar.org/paper/
Computing-the-shortest-path%3A-A-search-meets-graph-Goldberg-Harrelson/
e39ba4c989874285e9473b4532dc275c12ed78c0

[6] Johnson, Donald B.: Efficient Algorithms for Shortest Paths in Sparse Networks.
https://dl.acm.org/doi/pdf/10.1145/321992.321993

[7] Yen, Jin Y.: An algorithm for finding shortest routes from all source nodes to a given
destination in general networks. In: Quarterly of Applied Mathematics 27 (1970), Nr. 4,
S. 526–530. http://dx.doi.org/10.1090/qam/253822. – DOI 10.1090/qam/253822.
– ISSN 0033–569X

[8] Eppstein, David: Finding the k Shortest Paths. In: SIAM Journal on Computing 28
(1998), Nr. 2, S. 652–673. http://dx.doi.org/10.1137/S0097539795290477. – DOI
10.1137/S0097539795290477. – ISSN 0097–5397

[9] Ramalingam, G. ; Reps, Thomas: An Incremental Algorithm for a Generalization of
the Shortest-Path Problem. In: Journal of Algorithms 21 (1996), Nr. 2, 267–305. http:
//dx.doi.org/10.1006/jagm.1996.0046. – DOI 10.1006/jagm.1996.0046. – ISSN
0196–6774

29

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6eb38c11c7ce6d0711483078a969bf82b83eff9f
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6eb38c11c7ce6d0711483078a969bf82b83eff9f
http://dx.doi.org/10.20944/preprints202008.0627.v1
http://dx.doi.org/10.1145/367766.368168
https://www.semanticscholar.org/paper/Computing-the-shortest-path%3A-A-search-meets-graph-Goldberg-Harrelson/e39ba4c989874285e9473b4532dc275c12ed78c0
https://www.semanticscholar.org/paper/Computing-the-shortest-path%3A-A-search-meets-graph-Goldberg-Harrelson/e39ba4c989874285e9473b4532dc275c12ed78c0
https://www.semanticscholar.org/paper/Computing-the-shortest-path%3A-A-search-meets-graph-Goldberg-Harrelson/e39ba4c989874285e9473b4532dc275c12ed78c0
https://dl.acm.org/doi/pdf/10.1145/321992.321993
http://dx.doi.org/10.1090/qam/253822
http://dx.doi.org/10.1137/S0097539795290477
http://dx.doi.org/10.1006/jagm.1996.0046
http://dx.doi.org/10.1006/jagm.1996.0046

Bibliography

[10] Bernstein, Aaron ; Nanongkai, Danupon ; Wulff-Nilsen, Christian: Negative-
Weight Single-Source Shortest Paths in Near-linear Time. http://arxiv.org/pdf/
2203.03456

[11] Cohen, Michael B. ; Madry, Aleksander ; Sankowski, Piotr ; Vladu,
Adrian: Negative-Weight Shortest Paths and Unit Capacity Minimum Cost Flow in
Õ(m10/7 logW) Time. http://arxiv.org/pdf/1605.01717

[12] Bast, Hannah ; Delling, Daniel ; Goldberg, Andrew ; Müller-Hannemann,
Matthias ; Pajor, Thomas ; Sanders, Peter ; Wagner, Dorothea ; Werneck,
Renato F.: Route Planning in Transportation Networks. http://arxiv.org/pdf/
1504.05140

[13] Leighton, F.: Introduction to Parallel Algorithms and Architectures. 1st edition.
[Erscheinungsort nicht ermittelbar] and Boston, MA : Morgan Kaufmann and Sa-
fari, 2014 https://learning.oreilly.com/library/view/-/9781483221151/?ar. –
ISBN 9781483221151

[14] Lavalle, Steven M.: Planning algorithms. New York, N.Y : Cambridge University
Press, 2006. http://dx.doi.org/10.1017/CBO9780511546877. http://dx.doi.org/
10.1017/CBO9780511546877. – ISBN 9780511546877

[15] What Is the Difference Between a Directed and an Undirected Graph. In:
Baeldung on Computer Science (27.06.2020). https://www.baeldung.com/cs/
graphs-directed-vs-undirected-graph#undirected-graphs

[16] van Steen, Maarten: Graph theory and complex networks: An introduction. S.l. :
Maarten van Steen, 2010. – ISBN 978–90–815406–1–2

[17] Fulber-garcia, Vinicius: Graph Theory: Path vs. Cycle vs. Circuit. In:
Baeldung on Computer Science (31.01.2022). https://www.baeldung.com/cs/
path-vs-cycle-vs-circuit

[18] The Boost Graph Library - 1.53.0. https://www.boost.org/doc/libs/1_53_0/libs/
graph/doc/index.html. Version: 14.08.2024

[19] Kovacs, Peter: LEMON. https://lemon.cs.elte.hu/trac/lemon.
Version: 03.10.2017

[20] Board, CGAL E.: Documentation. https://www.cgal.org/. Version: 23.07.2024

[21] Khallaghi, Siavash: lignum-vitae/examples/djikstra/main.cpp GitHub. https://
github.com/siavashk/lignum-vitae/blob/master/examples/djikstra/main.cpp.
Version: 23.07.2024

[22] Time and Space Complexity of Dijkstra’s Algorithm. In:
GeeksforGeeks (09.02.2024). https://www.geeksforgeeks.org/
time-and-space-complexity-of-dijkstras-algorithm/

30

http://arxiv.org/pdf/2203.03456
http://arxiv.org/pdf/2203.03456
http://arxiv.org/pdf/1605.01717
http://arxiv.org/pdf/1504.05140
http://arxiv.org/pdf/1504.05140
https://learning.oreilly.com/library/view/-/9781483221151/?ar
http://dx.doi.org/10.1017/CBO9780511546877
http://dx.doi.org/10.1017/CBO9780511546877
http://dx.doi.org/10.1017/CBO9780511546877
https://www.baeldung.com/cs/graphs-directed-vs-undirected-graph#undirected-graphs
https://www.baeldung.com/cs/graphs-directed-vs-undirected-graph#undirected-graphs
https://www.baeldung.com/cs/path-vs-cycle-vs-circuit
https://www.baeldung.com/cs/path-vs-cycle-vs-circuit
https://www.boost.org/doc/libs/1_53_0/libs/graph/doc/index.html
https://www.boost.org/doc/libs/1_53_0/libs/graph/doc/index.html
https://lemon.cs.elte.hu/trac/lemon
https://www.cgal.org/
https://github.com/siavashk/lignum-vitae/blob/master/examples/djikstra/main.cpp
https://github.com/siavashk/lignum-vitae/blob/master/examples/djikstra/main.cpp
https://www.geeksforgeeks.org/time-and-space-complexity-of-dijkstras-algorithm/
https://www.geeksforgeeks.org/time-and-space-complexity-of-dijkstras-algorithm/

Bibliography

[23] Boost Graph Library: Dijkstra’s Shortest Paths - 1.41.0. https://www.boost.org/doc/
libs/1_41_0/libs/graph/doc/dijkstra_shortest_paths.html. Version: 14.08.2024

[24] Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee:
libs/graph/example/bellman-example.cpp. https://www.boost.org/doc/libs/1_
75_0/libs/graph/example/bellman-example.cpp. Version: 15.04.2024

[25] Time and Space Complexity of Bellman–Ford Algorithm. In:
GeeksforGeeks (09.02.2024). https://www.geeksforgeeks.org/
time-and-space-complexity-of-bellman-ford-algorithm/

[26] Bellman Ford Shortest Paths - 1.85.0. https://www.boost.org/doc/libs/1_85_0/
libs/graph/doc/bellman_ford_shortest.html. Version: 14.08.2024

[27] CSAChannel IISc Danupon Nanongkai: Negative-Weight Single-Source Shortest
Paths in Near-linear TimeDanupon Nanongkai. https://www.youtube.com/watch?v=
awvBpvlbG1M&t=4s. Version: 19.03.2024

[28] West, Douglas B.: Introduction to graph theory. 2. Aufl. Upper Saddle River, NJ :
Prentice Hall, 2000. – ISBN 0–13–014400–2

[29] Nanongkai, Danupon: [Public Notes] Low-Diameter Decomposition. https://
hackmd.io/@U0nm1XUhREKPYLt1eUmE6g/Sycpovkiq. Version: 03.05.2024

[30] Online, Shiksha: What is a Priority Queue? - Shiksha Online. In: Shik-
sha Online (15.12.2022). https://www.shiksha.com/online-courses/articles/
priority-queue-all-that-you-need-to-know/

[31] 9th DIMACS Implementation Challenge: Shortest Paths. https://www.diag.
uniroma1.it/challenge9/download.shtml. Version: 14.06.2010

[32] Intel: Fix Performance Bottlenecks with Intel® VTune™ Profiler. https://www.
intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html.
Version: 13.08.2024

[33] std::bad_alloc - cppreference.com. https://en.cppreference.com/w/cpp/memory/
new/bad_alloc. Version: 15.08.2024

31

https://www.boost.org/doc/libs/1_41_0/libs/graph/doc/dijkstra_shortest_paths.html
https://www.boost.org/doc/libs/1_41_0/libs/graph/doc/dijkstra_shortest_paths.html
https://www.boost.org/doc/libs/1_75_0/libs/graph/example/bellman-example.cpp
https://www.boost.org/doc/libs/1_75_0/libs/graph/example/bellman-example.cpp
https://www.geeksforgeeks.org/time-and-space-complexity-of-bellman-ford-algorithm/
https://www.geeksforgeeks.org/time-and-space-complexity-of-bellman-ford-algorithm/
https://www.boost.org/doc/libs/1_85_0/libs/graph/doc/bellman_ford_shortest.html
https://www.boost.org/doc/libs/1_85_0/libs/graph/doc/bellman_ford_shortest.html
https://www.youtube.com/watch?v=awvBpvlbG1M&t=4s
https://www.youtube.com/watch?v=awvBpvlbG1M&t=4s
https://hackmd.io/@U0nm1XUhREKPYLt1eUmE6g/Sycpovkiq
https://hackmd.io/@U0nm1XUhREKPYLt1eUmE6g/Sycpovkiq
https://www.shiksha.com/online-courses/articles/priority-queue-all-that-you-need-to-know/
https://www.shiksha.com/online-courses/articles/priority-queue-all-that-you-need-to-know/
https://www.diag.uniroma1.it/challenge9/download.shtml
https://www.diag.uniroma1.it/challenge9/download.shtml
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://en.cppreference.com/w/cpp/memory/new/bad_alloc
https://en.cppreference.com/w/cpp/memory/new/bad_alloc

	statutory declaration
	abstract
	Introduction
	Related work
	Motivation of Master Thesis
	Foundations
	Implementation of NWB
	Timer class
	Dijkstra class
	Bellman-Ford class
	NWB algorithm

	Evaluation and Comparison with Dijkstra and Bellmann-Ford
	Conclusion
	List of Abbreviations

