
HOCHSCHULE FÜR ANGEWANDTE WISSENSCHAFTEN
MÜNCHEN

FAKULTÄT FÜR INFORMATIK UND MATHEMATIK

Masterarbeit

zur Erlangung des Grades

Master of Science

im Studiengang Informatik

Analyzing a possible implementation
of Bounded Model Checking for

WebAssembly programs

Analyse einer möglichen
Implementierung von Bounded

Model Checking für
WebAssembly-Programme

Autor: Maximilian Reichl

Matrikelnummer: 29437222

Abgabedatum: 19. Dezember 2024

Betreuer: Prof. Dr. Matthias Güdemann

I confirm that this thesis is my own work and I have documented all sources and material used.

München, 19. Dezember 2024 Maximilian Reichl

Contents

1 Introduction 1

2 Background 5
2.1 WebAssembly . 5

2.2 Program Verification . 5

2.2.1 Introduction . 5

2.2.2 Model Checking . 6

2.2.3 SAT solvers . 6

2.2.4 Bounded Model Checking . 7

2.2.5 SMT solvers . 8

2.3 The CBMC framework . 9

3 Related work 11
3.1 Bounded model checking for different languages 11

3.2 Verification of WebAssembly programs . 11

4 Methodology 13
4.1 Approach . 13

4.2 Tools and Techniques . 13

5 CBMC and the GOTO language 15
5.1 Introduction . 15

5.2 The GOTO language . 15

5.2.1 Introduction . 15

5.2.2 Types . 17

5.2.3 Statements . 19

5.2.4 Expressions . 22

6 Designing a Wasm frontend for CBMC 27
6.1 Introduction to WebAssembly Bytecode Format . 27

6.2 Functions . 27

6.2.1 Introduction . 27

6.2.2 Operand stack . 28

6.2.3 Local Variables . 29

6.2.4 Return values . 31

6.3 Integer Data . 31

6.3.1 Introduction . 31

6.3.2 Shorter integer types . 32

6.3.3 Overflows and undefined results . 32

6.3.4 Integer operation instructions . 33

6.4 Floating Point Data and Instructions . 37

iii

Contents

6.5 Vector data and SIMD instructions . 39
6.5.1 Introduction . 39
6.5.2 Implementation considerations . 40
6.5.3 Vector instructions . 42

6.6 Linear memory . 44
6.6.1 Introduction . 44
6.6.2 Linear Memory Model in WebAssembly . 45
6.6.3 Memory instructions . 47
6.6.4 Data segments . 50

6.7 Structured code flow . 50
6.7.1 Introduction . 50
6.7.2 Control-Flow Instructions in WebAssembly 50
6.7.3 Conversion into the GOTO language . 52

6.8 Type conversions . 55
6.8.1 Integer to Integer . 56
6.8.2 Float to Float . 57
6.8.3 Integer to Float . 57
6.8.4 Float to Integer . 57
6.8.5 Reinterpretation cast . 58

6.9 Reference data . 58
6.9.1 Function references . 58
6.9.2 External references . 60
6.9.3 Null reference . 60
6.9.4 Tables and elements . 60

6.10 Global variables . 60
6.11 Miscellaneous instructions . 61

7 Practical considerations 63
7.1 Parsing . 63

7.1.1 General structure of a Wasm binary . 63
7.2 User-defined assertions . 65
7.3 Shared data with host environment . 66
7.4 Symbol names . 66

8 Summary 69

Bibliography 73

iv

1 Introduction

In our modern world, software and technology are more present than ever in our lives. As
software complexity grows, so does the potential for errors. Such errors can lead to severe
consequences, particularly in safety-critical domains. Finding errors is a hard task and this is
done in most cases through rigorous testing.

A different way of finding errors in systems is offered by a method called bounded model
checking. This is a technique from the field of formal verification. Many formal verification
methods try to prove using formal techniques that a system is correct or at least adheres to a
formal specification.

Bounded model checking takes the reverse approach: It tries to prove that errors exist by
finding inputs that lead to defined erroneous states.

The advantages of bounded model checking over testing are best shown with an example.
Listing 1 shows a function written in the C language that takes the absolute value of an integer.
The absolute value is the non-negative value of an integer without the sign.

1 int absoluteValue(int number) {
2 int returnValue;
3 if (number >= 0)
4 returnValue = number;
5 else
6 returnValue = number * (-1);
7

8 return returnValue;
9 }

Listing 1: Absolute value function

This code seems very sensible, but to make sure it works as intended we can write a unit test
for it. Listing 2 shows how this unit test would look like, with two test cases covering each branch
of the logic.

1 int testAbsoluteValue() {
2 assert(absoluteValue(7) == 7);
3 assert(absoluteValue(-3) == 3);
4 }

Listing 2: Unit test for the absoluteValue function

With the tests passing we are pretty sure that our function is error-free. We deploy the code in
production and the application works. After some time, an error ticket got raised because the
application broke down. Reviewing the logging output, we apparently see that the result of our
function was a negative number, that caused trouble in further processing. After all, we did not

1

1 Introduction

expect that this function returns a negative number. The result we see in our logging output is
the number −2147483648.

The reason that has happened is that in C signed integer values are represented using two’s
complement, where the first bit indicates the sign. 1 The possible values that an int can have in C
is ranging from −2147483648 to 2147483647, which means that there is one more negative value
than positive values. The reason for this is that 0 has the sign bit not set and counts therefore as
a positive number.

When our function is called with the input −2147483648, it tries to calculate −2147483648·(−1),
which is 2147483648. This number is outside the range of an int, so the program takes its best
guess at representing this value, which results in −2147483648, a negative number. This could
have had worse consequences, in C this failed calculation actually triggers undefined behavior
[12, §6.5 5], which means that anything could have happened. This seems like a very rare case
that will almost never happen with random input, but it could be that the input is dependent on
some user action and there are malicous actors trying to compromise the system.

This shows how easy it is to create code with an undetected error in it that even slipped
through testing. Such a type of error could have been found with bounded model checking. To
demonstrate I will use a special program called CBMC, the C Bounded Model Checker. To check
our function we need to define an erroneous state. This can be done with an assertion, as shown
in line 8 of listing 3.

1 int absoluteValue(int number) {
2 int returnValue;
3 if (number >= 0)
4 returnValue = number;
5 else
6 returnValue = number * (-1);
7

8 assert(returnValue >= 0);
9 return returnValue;

10 }

Listing 3: Erroreous state definition

When we run CBMC on this code, it will show us that the assertion is violated and gives us
immediately the input leading to that violation, in this case the input of −2147483648.

There exist bounded model checking tools for many languages, most notably CBMC for C and
C++, JBMC for Java, ESBMC for C, C++, Python and Solidity and Kani for Rust.

A technology that has gained a lot of traction in recent years is WebAssembly. WebAssembly
is a bytecode format that allows code written in many different languages to run on the web
alongside JavaScript. The motivation behind this is that as the web becomes more and more
targeted by application developers, JavaScript is not designed to run high-performance code.
Whereas WebAssembly code can be executed at near-native speed, which expands the possibili-

1The representation of signed integers in C is actually implementation-defined, but for simplicity we assume it is
two’s complement. We also assume that on the particular system an int is 32 bits wide.

2

ties of web applications. It also allows developers to port their native applications to the web
easily. Another advantage is that WebAssembly code to be run outside of the web in standalone
runtimes, which makes WebAssembly able to run applications cross-platform at near-native
execution speed.

In this thesis I am exploring the possibility of building a bounded model checking tool that
targets WebAssembly bytecode. For this, I will use the existing toolchain from CBMC as a
framework and find out what needs to done to extend it with a frontend for WebAssembly.

3

2 Background

2.1 WebAssembly

WebAssembly, or Wasm in short, is a standardized bytecode format. Its intended use is to run
alongside JavaScript in the web, but because of its open design it can be used in other contexts.

The idea is that WebAssembly acts as a compilation target for fast languages such as C or Rust.
If a web application needs near-native execution speed for a part of the program, then this part
can be written in another language and compiled to WebAssembly.

Wasm code gets released as modules. Unlike for example Java, whose bytecode format shares
similar ideas, Wasm modules are not intened to be standalone programs. Every Wasm module
needs a host environment in which it runs, which is in most cases a web browser, but it can
also run outside of the browser using Node.js or one of many available third-party runtimes.
Wasm can exchange data and functionality with the host environment through the use of
imports and exports. Therefore, there is no “standard library”, any additional functionality
needs to be provided by the host environment. With the increasing use of Wasm outside of web
environments, there was a need to standardize common OS interaction such as input/output
and filesystem access. This standard is known as WebAssembly System Interface (WASI). [1]

Wasm code is a bytecode that means it is a binary format containing instructions and data,
similar to machine code. The big difference to machine code is that machine code only runs
on the one CPU architecture it was compiled to, while bytecode is designed to be runnable on
most systems. This is possible because bytecode does not target a physical CPU, it targets a
virtual CPU. The running environment of the Wasm module simulates that virtual CPU while
interpreting the Wasm bytecode. Usually to increase execution speed the Wasm module gets
just-in-time-compiled to native machine code.

2.2 Program Verification

2.2.1 Introduction

The process to prove that a program works correctly is called formal verification. The concept of
constructing a proof is borrowed from math, where mathematicians have been proving theorems
for hundreds of years. In math, theorems are proven by logically deducting them from other
theorems or axioms, which are postulates that defined to be true. There are theorems, that
have been tested to be true for billions of numbers. But without a logical proof, it can only be
assumed that the theorem is correct, since there might a number that has not been tried yet
which would disprove the statement.

But how can we prove that a program is correct? How do we define what “correct” means?
Intuitively, we can say that a program is correct, if it follows its specification. Usually the
specification of a program is the sum of its requirements. One of the approaches to formal
verification is to precisely define these requirements into a formal specification. Then we can

5

2 Background

are able to prove it using mathematical and logical techniques. This can be done manually, or
even automatically using programs called provers.

2.2.2 Model Checking

One of the approaches to automate verification is model checking. This got introduced by the
works of E. M. Clarke and E. A. Emerson in the 1980s [6]. In model checking a system is modeled
using a finite state machine. A finite state machine is a representation of a system as a graph,
where each node represents one possible state. The edges between nodes represent allowed
transitions, these are operations that lead to the program changing its state. The specification is
written in a formal language called computation tree logic, which is a form of temporal logic.
This is helpful when dealing with concurrent protocols that have a low number of defined states.

Earlier types of model checking focused on hardware protocols. Software verification was
often unfeasible, due to even simple programs reaching exponentially high number of states.
This is known as state explosion. This got improved later with symbolic model checking [4]. In
symbolic model checking state machines are modeled with binary decision diagrams (BDDs).
Modeling with BDDs increased the realistic number of states that can be checked significantly.

2.2.3 SAT solvers

To draw the bridge from symbolic model checking to bounded model checking, we first need to
introduce SAT solvers. The boolean satisfiability problem, often called SAT, is the problem of
whether or not a boolean formula is satisfiable. This means proving that for a boolean formula
there are inputs that make the whole expression true, or if not, proving that such inputs do not
exist.

A boolean formula is a formula where each variable can only have two possible states, true
and false. Operations on boolean variables include negation (¬), conjunction (∧, a∧b evaluates
true only if a AND b are both true) and disjunction (∨, a ∨b evaluates true if one of a OR b are
true, or both).

This is an example formula that is satisfiable:

(a ∨b)∧ (a ∨¬b)∧¬b (2.1)

It is easy to spot that the formula is satisfiable if a is true and b is false.

Now another example:

a ∧b ∧ (¬a ∨¬b) (2.2)

This formula is not satisfiable. With two variables, this seems easy to solve but for bigger
expressions using more variables, we can rely to solve. These programs are called SAT solvers
and can solve formulas with hundreds of variables.

SAT solvers help with verification because we can theoretically reduce every program into a
boolean formula. This works by thinking about data that a computer processes as a number
of boolean variables, one for each bit. But computers can not only perform standard boolean

6

2.2 Program Verification

operations on data, they can do things like arithmetic. It is indeed possible to reduce complex
arithmetic operations down to standard boolean operations, if it would not be possible, no com-
puter would work, since electronic circuits cannot “calculate”, they can only perform boolean
operations using transistors.

As an example I show how addition can be translated into a boolean formula using a 1-bit half
adder. This adds two 1-bit numbers together. Our 1-bit input numbers are represented in binary
and can either be 1 or 0. 0 plus 0 equals 0, 0 plus 1 or 1 plus 0 equals 1, and 1 plus 1 equals 2 in
decimal, which is 10 in binary. The last digit of 10 can be thought of as the result, and the 1 may
be used as a carry if we would add longer numbers together. This gives us the table shown in
table 2.1.

Input 1 Input 2 Result Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 2.1: Result table for 1-bit addition

From this table it is possible to derive how the result bit r and carry bit c can be calculated
from inputs i1 and i2 using boolean expressions:

r = (i1 ∧¬i2)∨ (¬i1 ∧ i2) (2.3)

c = i1 ∧ i2 (2.4)

A full adder works by adding the carry as an additional input, and from there on, longer
numbers can be added by chaining full adders together.

In similar ways all other operation that computers and programs are able to perform can be
reduced into boolean formulas. In the next section I explain how this can be useful for program
verification.

2.2.4 Bounded Model Checking

The general idea of bounded model checking is not to prove that a program is fully correct. To
prove that a program is correct, the program needs to have a formalised specification, and the
program will only be as good as the specification. Instead, bounded model checking defines
erroneous states that should not occur and uses SAT solvers to find inputs that lead to these
states. This can help to find many bugs. This way of finding errors is called falsification, while
verification is proving the absence of errors. Since the goal is not to have a full proof, bounded
model checking does not replace any other verification methods. [3]

Bounded model checking is generally faster than other forms of model checking and therefore
more suitable for software verification than other methods. The reason is because to prove the
absence of errors, a model checking algorithm needs to check every possible state of the system,
which can be a huge number even in small programs. When trying to find errors, bounded
model checking keeps the number of possible states low by introducing a bound that limits the

7

2 Background

execution length. If no errors are found, this bound will be gradually increased, until an error is
found, all states are reached or it is no longer practicable.

Instead of BDDs, bounded model checking uses SAT solvers. We define conditions that
indicate an errorful state. The system is transformed into a boolean formula and the SAT solver
tries to satisfy the conditions that we have defined. If the formula is satisfied the SAT solver gives
a possible value mapping of all variables in the formula, which can be traced back to find inputs
that lead to errors.

Traditonally bounded model checking tools used SAT solvers, but they can now also be used
with SMT solvers.

2.2.5 SMT solvers

SMT solvers are programs that can solve satisfiability problems using different theories than
first-order logic that SAT solvers use. SMT stands for Satisfiability Modulo Theories, which is
the name of the research field on these theories.

To showcase how an SMT solver operates, listing 4 shows an example of an SMT formula.

1 (declare-const a Int)
2 (declare-const b Int)
3 (assert (> a 1))
4 (assert (> b 1))
5 (assert (= 14351 (* a b)))
6 (check-sat)
7 (get-model)

Listing 4: Example SMT formula

This formula checks if a given number is a prime number. This works by declaring two integer
constants a and b and then we add three constraints. These constraints are declared using the
assert statement. Operators are placed using Polish notation where the operator comes before
both arguments, so the first two constraints say that both a and b are greater than 1. Since they
are integers they are at least 2. The third constraint defines that the product of a and b is be
equal to the number we check, in this case 14351.

The solver tries to find values for the variables we defined so that all constraints are satisfied,
or tries to prove that there exist no such values. In this case, if the number we test can be
represented through a product where both factors are at least 2, it is not prime. On the other
hand, if there are no such values, then the number is prime.

The (check-sat) command tells the solver to check for satisfiability, and the printed result is
either sat or unsat. In this case the number is not prime, and the (get-model) command shows
us example values for a and b that satisfy all conditions, as shown in listing 5.

This example uses the theory of integers, but in software verification we want to use the theory
of fixed-size bitvectors instead. In this theory values are not integers in the mathematical sense,
they are a sequence of bits with a specific length. The theory adds operators that transform
these bitvectors the same way as many common CPU instructions do.

8

2.3 The CBMC framework

1 sat
2 (
3 (define-fun b () Int
4 127)
5 (define-fun a () Int
6 113)
7)

Listing 5: Solver output

Translating a program into an SMT formula is therefore a lot more convenient than trans-
lating it into an SAT procedure. We do not have to model complex operations into boolean
transformations, and do not have to seperate numbers into bits.

2.3 The CBMC framework

The CBMC framework and toolchain includes tools and libraries to perform bounded model
checking on programs. The most prominent example is the C Bounded Model Checker CBMC
which checks programs written in the C language. [5]

The framework has a modular architecture which consists of a frontend, which is language-
specific, and a backend, which is language-agnostic. That means that the backend can be reused
and new languages can be added by implementing a new frontend. Many existing projects such
as JBMC [7] have taken this approach.

To implement a frontend the code needs to converted into a GOTO program, which a language-
independent representation. All further transformations, analyses and checks are then done by
the CBMC backend.

9

3 Related work

3.1 Bounded model checking for different languages

Bounded model checking is getting increasingly common in software contexts. There are
projects for many programming languages to build a bounded model checker.

JBMC is built on top of CBMC and consists of a frontend for the Java language. [7] To be more
precise, not Java, but the bytecode that is executed by the Java Virtual Machine. Therefore it can
check other languages that compile for the JVM, such as Kotlin or Scala.

Kani is a verification and model checking tool for the Rust programming language. [16] This is
done using annotations in the source code. It also uses some parts of CBMC for its backend.

The ESBMC project has been forked from CBMC and does bounded model checking using
SMT solvers. [15] It includes frontends for various languages, such as C, C++ and Python [8]. It
also includes a frontend for the Solidity smart contract language. [17]

3.2 Verification of WebAssembly programs

There is not much literature about the verification of WebAssembly code. Most publications talk
about the verification of the formal WebAssembly semantics and specification itself, not the
code it covers. [18] [19]

Verification of programs built in WebAssembly has not been discussed by any published
literature. I have only found two master’s theses that cover the topic. In 2019 a Uruguayan
student developed an approach to detect runtime errors using static analysis of WebAssembly
code. [11] In 2023 a Spanish student developed a formal specification for WebAssembly programs.
[14]

11

4 Methodology

In this chapter I explain the method I used to achieve the goal of designing a tool that can do
bounded model checking for Wasm programs. First I talk about the general approach and then I
explain the tools and techniques that have been used to achieve this.

4.1 Approach

To do bounded model checking we have to transform the program into a formula that can be
checked by a solver. This can be done by converting it into the CNF format for SAT solvers or to
the SMT-LIB format for SMT solvers.

To make it easier, we use the CBMC framework. The key is that the framework, similar to a
compiler, works in two parts. The first part, the frontend, translates the code that needs to be
checked into a language-agnostic intermediate representation.

The backend then takes this intermediate representation and transforms it into a formula
to be used with a solver. This approach makes it possible that the same backend works with
different languages.

In CBMC, the internal representation is the GOTO language. How the GOTO language works
and how CBMC reduces it into a solver formula is explained in chapter 5.

As a result of this, it is only necessary to design a frontend that translates Wasm bytecode
into this intermediate representation. This happens in chapter 6 where I take a detailed look
at Wasm bytecode. I show the features of the language, how they work and how they may be
converted. I also discuss what to look out for and if there are some areas where the CPROVER
framework needs to be extended.

In chapter 7 I talk about some practical aspects of bounded model checking Wasm programs.

4.2 Tools and Techniques

In this section I want to explain which tools, programs and compilers I used for this work.

The main point of reference has been the CBMC program that includes CPROVER toolchain,
which the content of this thesis builds upon. I used CBMC version 6.0.0 to explain its inner
workings and to demonstrate its use. To showcase GOTO programs I ran CBMC with the
–show-goto-functions option.

To generate WebAssembly code in most cases I used the C language with the Clang compiler
version 14.0.0. Whenever the code needed standard library functions I used Emscripten in
version 3.1.70. In some cases I wrote the Wasm code by hand using the WebAssembly text format.
I also used this format for showing compiled Wasm code. To convert Wasm code between binary
and text format I used the tools wasm2wat and wat2wasm from the WebAssembly binary toolkit.

In some cases I used the Rust programming language to show an alternate source of Wasm
code when needed. For this I used version 1.73.0 of the Rust compiler and the Cargo build
toolchain.

13

4 Methodology

Also sometimes I use Java code to demonstrate JBMC, because Java bytecode shares some
similarities with Wasm bytecode. To compile the Java code I use version 21.0.4 of the OpenJDK
Java development kit.

14

5 CBMC and the GOTO language

5.1 Introduction

In this chapter I explain the CBMC backend, which we are going to use for our project. I will
show how we are targeting it using an abstract syntax called GOTO programs. First I will explain
the building blocks and features of GOTO programs. I will also shortly explain how the backend
transforms the GOTO program into a formula that works as input for a solver.

5.2 The GOTO language

5.2.1 Introduction

CBMC needs to transform the code it checks into a machine readable form that can be used
by a solver. Since it can be used with multiple languages, each frontend needs to transform
the source program into a language-independent representation. In CBMC, this intermediate
representation are GOTO programs. The namesake feature of GOTO programs is the goto
statement. Each structured statement that common languages use such as while, for or if is
translated into either a nonconditional or a conditional goto statement. GOTO programs are
imperative, a program consists of functions. Each function contains a linear list of statements,
because any kind of branching or loops have been replaced by the goto statement.

To see how this works we use the example code in listing 6, which calculates the factorial of a
number.

1 int factorial(int n) {
2 int ret = 1;
3 for (int i = 1; i <= n; i++) {
4 ret *= i;
5 }
6 return ret;
7 }

Listing 6: C function that calculates the factorial

This will get transformed into the GOTO program shown in listing 7.

The program looks quite different, but I will explain what it does it line by line. The first thing
that happens in line 3 is a variable declaration r et of type si nt32, which is a signed 32-bit integer.
The ASSIGN statement in line 4 assigns a value to r et , the constant si nt32 of 1. One of the
conditions of GOTO programs is that declaration and assignment always need to be separated.
Then we declare a variable i in the same way and set it to 1.

When we look at line 7 we see that at the beginning there is a label definition. Labels get used
as targets by GOTO statements, one of which comes already in the same line. In this case it is a
conditional GOTO, there is condition after the IF, only if the condition is true, we execute the

15

5 CBMC and the GOTO language

1 FUNCTION factorial INPUT n: sint32 RETURN sint32
2

3 DECL ret: sint32
4 ASSIGN ret := const(1, sint32)
5 DECL i: sint32
6 ASSIGN i := const(1, sint32)
7 1: GOTO 2 IF greater(n, i)
8 ASSIGN ret := mult(ret, i)
9 ASSIGN i := add(i, const(1, sint32))

10 GOTO 1
11 2: DEAD i
12 SET_RETURN_VALUE ret
13 DEAD ret
14 END_FUNCTION

Listing 7: Equivalent GOTO program

GOTO. The condition is that the value of n is greater than the value of i . Instead of n > i I have
written it like I have to emphasize the fact that “greater” is an operation with two inputs, that
produces a boolean value as a result. To explain what the program is doing, this is the condition
when the original C code would leave the loop, so here we go to label 2 basically after the loop.

The next two lines are the logic that used to be inside the for loop: r et gets multiplied by i and
i gets incremented by 1. Then it is clear how the for loop got translated into goto statements. In
line 10 we jump back to line 7 to test the loop condition again.

Line 11 introduces the DEAD statement, this marks that the lifetime of the variable i has ended
and it is no longer in use.

GOTO programs are a form of an abstract syntax tree, or AST. ASTs get used by a lot of software
such as compilers, to translate the source code into an internal representation, which is easier
for the program to do further processing on.

It is called tree because we can think of the structure like a tree: A function is a list of statements,
and each statement may be a combination of smaller syntax elements. For example in line 9 of
listing 7, the ASSIGN statement consists of two parts: The left hand side, which is the variable i ,
and the right hand side of the assignment. The right hand side is an additon operation, which
takes two inputs, the two summands. The first summand is the variable i , and the second
summand is a constant declaration, which consists of a value and its type.

Before I explain each statement in detail, I want to give definitons and explanations for some
terms that I will use in the next sections and throughout the whole thesis.

Statement A statement is a construct in an imperative language that carries out an action,
it therefore changes the state of the program in one way or another. In the GOTO language
functions consists of a list of statements. There are different kinds of statements, which we
will explore in section 5.2.3. When I show the syntax of GOTO progams, statements are always
highlighted by writing them in UPPERCASE.

16

5.2 The GOTO language

Symbol A symbol is an abstract way of defining a unit that can be the target of an assignment.
It can be a variable, an array element, a member of a struct.

Expression An expression is a part of the syntax that can be reduced to a single value, which it
evaluates to. Expression are part of many statements, for example the assignment statement
needs an expression on the right hand side or the conditional goto statement needs an expression
that evaluates to a boolean value. Expression can be nested, for example the addition expression
needs two subexpressions that represent the summands. Expressions can be classified into the
following subtypes:

• Operations: Types of expressions that require at least one subexpression as input which
they transform into a single result

• Symbols: Expressions that reads the value of a symbol
• Constants: Expressions that returns a constant value, they consist of a literal and a type

When I write GOTO programs I try to differentiate expressions from statements by writing them
in lowercase. Expression can have arguments, these are written using parentheses. This way
they resemble functions, which they are in some way, since they produce a single result that is
only dependent from the inputs. Arguments for expressions can either be subexpressions or
types, exception is the constant expression that consists of a literal and a type. We take a close
look at various expression types in section 5.2.4.

5.2.2 Types

GOTO programs can hold data of various types, in this section I will cover only the ones that we
need to use in our Wasm frontend.

Boolean

The boolean type represents a boolean value, which can only have two states, true or false. This
type represents abstract boolean values, which is different from technical representations, which
treat boolean values either as bitvectors of size 1 or as integers.

Fixed-Size Bitvectors

A bitvector is a list of individual bits where each bit can be either set to 1 or 0. In GOTO programs
we are only concerned about bitvectors of fixed size, so each bitvector is defined with a width
n. Bitvectors can be of arbitrary width and the total number of states a bitvector can have is 2n .
Due to the data types that Wasm defines we will mostly use bitvectors of sizes 128, 64, 32, 16 and
8. Bitvectors are just an array of bits, but they can be interpreted in many different ways. Here is
an overview of interpretations we are going to use:

• Uninterpreted: No interpretation, just raw data
• Unsigned integer: Binary representation of an integer that is zero or positive
• Signed integer: Representation of an integer that can be negative using two’s complement
• Uninterpreted integer: Data represents an integer, either signed or unsigned

17

5 CBMC and the GOTO language

• Float: Data represents a real number using the IEEE 754 standard

Uninterpreted bitvectors are used when the representation of the bits is not needed or not
important. In our syntax uninterpreted bitvectors are represented as bvn where n is the bit
width.

Integers represent integer numbers in binary format. We have to differentiate between signed
or unsigned integers. Unsigned integers treat every bit as a positive binary digit and therefore
can represent the number range [0;2n −1].

Signed integers use a technique called two’s complement. In two’s complement, the most
significant bit is used to determine the sign of the number, 0 means positive and 1 means
negative. Positive numbers have the same bit pattern as they do in unsigned integers. To change
the sign of a number, we invert all the bits and add 1.

For example representing the number 7 as an 8-bit signed integer results in 00000111. Inverting
all the bits leads to 11111000, then we add 1 and so we get 11111001, which is the representation
of −7. Signed integers can hold values in the range [−2n−1;2n−1 −1].

In many cases I will need to refer to the minimum or maximum value of a bitvector integer
representation. To simplify for the reader I will call these values INT_MIN and INT_MAX.

I have specified the ranges because they are important and highlight the difference between
normal arithmetic and bitvector arithmetic. What if an operation, for example multiplication,
leads to a result that is outside the number range? The answer is if the result of a bitvector
operation of width n can only be represented by a longer bitvector, the result is the last n bits of
the longer bitvector. This is also called wrapping arithmetic, because the values “wrap around”,
that means if you add 1 to INT_MAX, you will get INT_MIN. This is therefore a form of modular
arithmetic, so for unsigned integers we can define the result of an operation as the result mod 2n .

There is another form other than wrapping arithmetic, which is called saturation arithmetic.
In saturation arithmetic an integer as represented by the nearest possible representation. That
means in other words that if the value would be greater than INT_MAX, it will be INT_MAX, and
similarly, if the value is smaller than INT_MIN, it will be represented by INT_MIN. This is only
used when it is explicitly demanded, otherwise wrapping arithmetic will be used.

Uninterpreted integers are integers that can be either unsigned or signed. These are used
because many operations on integer bitvectors produce the same bitvector result regardless of
signed or unsigned arithmetic.

The type symbols in the syntax I chose are i ntn for uninterpreted integers, si ntn for signed
integers and ui ntn for unsigned integers of length n.

Floats or floating-point numbers are bitvectors interpreted as real numbers up to a certain
precision. Floating-point arithmetic uses the IEEE 754 standard. In this standard, numbers are
represented using a sign bit, a dedicated number of bits for the significand and a number of bits
for the exponent. The number can be constructed as si g n ∗ si g ni f i cand ∗2exponent .

There also exist representations for special use cases in mathematics like negative zero and
infinity. There are also special bit patterns called NaN, Not a Number, they represent the result
of operations like 0

0 that make no sense mathematically.

Floats cannot have an arbitrary width, the standard describes types of width 16, 32, 64, 128
and 256. We are only going to use floats of width 32 and 64. The notation of those types is f 32
and f 64.

18

5.2 The GOTO language

Arrays

Arrays are a composite type, they hold a number elements of another data type. Technically
there can be arrays of arrays but these will not be used in the next chapters. Arrays get initialised
using a type and a size. Each element can be accessed individually using an index operator.

Arrays can be difficult to convert into boolean logic because they provide a new layer of
abstraction. If each array index would be a constant value, then each array element can be dealt
with in the same way as any other variable. But they do not have to be, one can index arrays
using any expression they want, for example: ar r is an array and i and k are integer variables. I
can set an element ar r [i] and retrieve it with ar r [k].

This can be resolved in this example by an implication: If i = k, then the value set to ar r [k] is
the value ar r [i]. Otherwise it may be a different variable or undefined or an initial value.

Arrays do not correspond to a native data type in Wasm, but they will be used to model some
language elements such as memories and tables.

Structs

Structs are a composite type that consists of elements of other data types. A struct definition
needs to define all members, each member needs to have a name and a type. Each member can
be accessed using the name of the variable and the name of the member.

Like arrays, structs are not a native type in Wasm, but they will be used to model the return
values of functions that have multiple return values.

5.2.3 Statements

In this section I take a closer look at the different statements the GOTO language defines. I also
explain shortly how the backend transform these statements into a formula used by a solver.

Unconditional Goto

Syntax: GOTO <label>
The goto statement gets followed by a label, which the control flow jumps to.
goto statements do not get transformed into the solver formula directly. Instead, they guide

the way of a process called symbolic execution. This step starts at the beginning of the function
and translates other statements into elements of the formula. When it reaches a goto statement,
it continues at the target label.

If a goto statement jumps backwards, it creates a semantic loop. Statements in that loop will
get executed multiple times during symbolic execution. There is a bound that limits the number
of executions in a loop. If no counterexample can be found, the bound gets increased.

This is the defining feature of bounded model checking, in this way counterexamples can be
found very quickly, but it may take very long or is not possible to determine that no counterex-
amples exist.

Conditional Goto

Syntax: GOTO <label> IF <expression>

19

5 CBMC and the GOTO language

The conditional goto statement gets followed by a label and an expression that needs to be of
boolean type. If the expression evaluates to true, then execution continues at the target label.
Otherwise the execution continues at the next statement.

1 (...)
2 GOTO 1 IF greater(n, const(5, uint32))
3 ASSIGN x := const(3, uint32)
4 GOTO 2
5 1: ASSIGN x := const(4, uint32)
6 2: (...)

Listing 8: Example of a conditonal Goto

To explain how this gets converted into a boolean formula I use the example in listing 8. Here
we have a conditional goto statement in line 1. What happens during symbolic execution? The
sybolic execution takes both paths and combines them with the condition, or the inverse of
the condition. We know that if n is greater than 5, then x will be 3, otherwise x will be 4. So the
boolean formula for this sequence of statements could look like this:

(n = 5∧x = 3)∨ (n ̸= 5∧x = 4) (5.1)

Assignment

Syntax: ASSIGN <symbol> := <expression>
The assignment statement changes the value of the symbol to the value of the expression.

Both the symbol and the expression need to have the same type.

To the solver, assignment creates a condition of equality. We know that at that point in time,
the symbol is equal to the expression. But what happens when we re-assign the same variable,
or do something like this: x := x +1

This would lead to a contradiction, and therefore the backend uses a technique called single
static assignment (SSA). Each time we assign a new value to a variable in a symbolic execution
path, we create a new variable. We can do this by “versioning” the variable, so x := x +1 would
be replaced by x2 := x1 +1 during SSA transformation.

Assertion

Syntax: ASSERT <expression>
With the assertion statement you can define properties that you want to disprove. The

condition needs to be boolean expression.

Ultimately the goal of bounded model checking is to find counterexamples. To do this we
transform the program into a boolean formula and try to satisfy this formula with a solver. The
goal is to find counterexamples, a counterexample is a combination of inputs that disprove the
assertion condition.

20

5.2 The GOTO language

Since we want to satisfy the formula to disprove each assertion, what we need to do is take the
the formula for the rest of the program and invert each assertion condition.

1 DECL x: sint32
2 ASSIGN x: mult(n, n)
3 ASSERT greatereq(x, 0)

Listing 9: Assertion example

Listing 9 shows an example for an assertion. In this case we have a variable n that acts as input,
and a variable x. We assign the value n2 to x and assert that x is greater than or equal to 0.

To find an input n that disproves the assertion, we need to define the normal conditions for
the program and invert the assertion. This would result in:

x = n ·n ∧x < 0 (5.2)

Because of overflow the result of a signed integer multiplying itself is not guaranteed to be
positive. Plugging this formula into an SMT solver gives an example of n =−1049601.

Assumption

Syntax: ASSUME <expression>

The assumption statement looks similar to the assertion statement, after it follows a boolean
expression as well. We can use this statement to define properties that we expect to be true.
The solver treats these similar to assertions, the only difference is that we want to satisfy all
assumption, so we do not invert the condition.

An example use for assumptions is to make it easier to translate certain operations. Listing
10 for example shows how unsigned integer division of a and b can be implemented using
assumptions. [13, p. 146]

1 DECL q: uint32
2 DECL r: uint32
3 ASSUME equal(b, add(mult(a, q), r))
4 ASSUME less(r, b)
5 SET_RETURN_VALUE q

Listing 10: Assumption example

We define two variables q for the quotient and r for the remainder. Then we define two
assumptions: b = a ·q +r and r < b. The solver will try to find values for q and r that satisfy both
conditions, and if they do, they are the quotient and the remainder.

21

5 CBMC and the GOTO language

Variable declaration and termination

Syntax: DECL <symbol>: <type>
Syntax: DEAD <symbol>

Each variable that will be used needs to be explicitly declared with a type. There is no concept
of scopes in GOTO programs. A variable is valid as soon as it is declared until it is explicitly
terminated using the DEAD statement. One could possible declare a variable inside a function
and it would be available outside of it, but that it very uncommon. To make certain analyses
easier, a variable declaration should be as close as the first use of the variable as possible.
Similarly, a variable termination should be as close to the last use of the variable as possible. A
declaration cannot be combined with an assignment, these need to be two different statements.

Statements regarding functions

Syntax: CALL_FUNCTION <function>(<arguments>)
Syntax: ASSIGN <symbol> := <function>(<arguments>)
Syntax: SET_RETURN_VALUE <symbol>
Syntax: FUNCTION_END

The function call statement calls a function and transfers control to the function. If the
function accepts arguments they need to be passed. If a function call returns a value, the
function call can be used as the right hand side of an assignment, but not as a subexpression.
A function call is allowed to be recursive. The SET_RETURN_VALUE statement sets the return
value of the current function. This does not necessary need to be at the end of a function. The
end of function statement marks the end of the function.

5.2.4 Expressions

Symbol access

Syntax: <symbol>
The symbol access expression accesses the value of a symbol. The symbol can be any kind of

symbol, for example a variable. The resulting type of the expression is equal to the type of the
symbol.

Constants

Syntax: const(<literal>, <type>)
The constant expression defines a constant value. A constant value consists of a literal and its

type.

Simple arithmetic operations

Syntax: op(<expression>,<expression>), op = add | sub | mult | div | rem
Arithmetic operations consist of addition, subtraction, multiplication and division. There

is also a remainder operation, which calculates the remainder of a division. Each of these

22

5.2 The GOTO language

operations take two expressions of the same type as input, which needs to be an integer or float
type.

The type of the inputs determines the type of the output and also the semantics of the
operation. Floating point numbers and integers behave very differently. Division and remainder
operations also differ between unsigned and signed integers.

Comparison operations

Syntax: op(<expression>,<expression>), op = equal | notequal | less | lesseq
| greater | greatereq

Comparison operations take two expressions of the same type as arguments. The result is a
boolean value depending on if the condition is fulfilled or not. The equal and notequal opera-
tions work with any bitvector type. The other operations need an integer or float interpretation
and differ in semantics between unsigned and signed integers.

Boolean operations

Syntax: op(<expression>,<expression>), op = and | or | xor
Syntax: not(<expression>)

Boolean operations take boolean expressions as inputs and produce a boolean result. The
and, or and xor operations take in two inputs, while the not operation takes a single input an
inverts the result.

Bitwise boolean operations

Syntax: op(<expression>,<expression>), op = bitand | bitor | bitxor
Syntax: bitnot(<expression>)

Bitwise boolean operations take one or two bitvectors as input and produce a bitvector result.
The result gets constructed by performing the boolean operation for each bit. The inputs need
to be of the same type and can be any bitvector type other than float.

Shift operations

Syntax: op(<expression>,<expression>), op = shl | ashr | lshr | rotl | rotr
Shift and rotation operations need two arguments, the first needs to be a non-float bitvector

and the second an integer bitvector. Shift operations shift the bits from the first bitvector by a
number of bits to the left or right that is equal to the second bitvector. Left shift and logical right
shift fill the remaining bits with zeroes, while rotations fill the remaining bits the bits that got
shifted out on the other side. The arithmetic right shift fills the bits on the left with zeroes or
ones depending on the most significant bit of the original value.

Unary arithmetic operations

Syntax: op(<expression>), op = abs | neg

23

5 CBMC and the GOTO language

The unary arithmetic operations take a single integer or float bitvector as arguments. The abs
operation calculates the absolute value, while the neg operation flips the sign. The input for the
negation operation is not allowed to be an unsigned integer.

Unary bitwise operations

Syntax: op(<expression>, op = popcount | ctz | clz)
These operations take a non-float bitvector as input and return an unsigned integer. The

popcount operation counts how many bits are set to 1. The ctz (count trailing zeroes) operation
counts how many bits in a row are set to 0 from the end, while the clz (count leading zeroes)
operation counts how many bits in a row are set to 0 from the start of the bitvector.

If expression

Syntax: if(<expression>, <expression>, <expression>)
The first expression is a condition and needs to be a boolean, the second and third expression

can have any type but it needs to be the same. If the condtion is true, then the result of the
operation is the second expression, otherwise the third.

Bit manipulation operations

Syntax: extractbits(<expression>, <expression>, <type>)
Syntax: updatebits(<expression>, <expression>, <expression>)
Syntax: concat(<list[<expression>]>, <type>)

The extractbits operation has three arguments, the first is a source bitvector, the second is an
unsigned integer and the third is a type. The result is a bitvector of the specified type where the
bit pattern is extracted from the source bitvector, starting at the index specified by the second
argument.

The updatebits operation replaces some bits in the source bitvector, starting from the index
specified by the second argument, with the bit pattern specified by the bitvector in the third
argument.

In the extractbits and updatebits operations the index starts from the least significant bit.

The concat operation takes a list of bitvectors and a type as input and produces a bitvector of
that type where all input bitvectors are concatenated together. The order of operands is that the
most significant operand comes first.

Type cast operation

Syntax: typecast(<expression>, <type>)
The type cast operation converts the value from the first argument into the type specified by

the second argument. The semantics of the casting are similar to the casting done by casts in C
language.

Converting a bitvector to boolean results in false if the value is a float or integer representation
of 0, or an uninterpreted bitvector where all bits are set to 0. Otherwise the result is true. Similarly,

24

5.2 The GOTO language

converting a boolean to a bitvector results in the integer or float representation of 1 if the boolean
is true, otherwise 0. Uninterpreted bitvectors are treated like integers.

Conversion between floats and integers tries to find the best possible representation in the
target type of the closest numerical value. Conversion between uninterpreted bitvectors and
any other bitvector of the same length does not change the bit pattern.

Conversion from a bitvector to a bitvector of longer width fills the new bits with zeroes. The
exception is signed integers, here the bitvector gets sign-extended, that means that the value of
the most significant bit, which determines the sign, is the value that the new bits are filled with.

Conversion from a bitvector to a bitvector of smaller width results in the most significant bits
being dropped of.

Overflow detection expression

Syntax: binaryoverflow(<expressiontype>, <expression>, <expression>)
Syntax: unaryoverflow(<expressiontype>, <expression>)

The overflow detection expression returns a boolean value indicating if an integer operation
would result in an overflow. The first argument is an expression type indicating which operation
gets performed, and the other arguments are the operands of that operation. Valid options
for the first arguments are addition, subtraction, multiplication, negation and the left shift
operation. The type of the operation gets determined by the first operand, which needs to have
the same type as the second, with the exception of the left shift operation.

This expression can be combined with an assertion statement to place before the actual
operation happens. With this it is possible to automatically detect overflows, which is a source
of error in many cases.

The isNaN expression

Syntax: isNan(<expression>)
The isNaN expression returns true if the float bitvector input is a NaN value, otherwise false.

25

6 Designing a Wasm frontend for CBMC

To build a frontend for Wasm, we need to convert the bytecode into the GOTO language. In this
section, we take a deep look at Wasm bytecode and work out how this can be done. With JBMC,
a frontend for another bytecode language already exists, so we can take advantage of that. When
it is practical, we take a look into how JBMC works, but we cannot reuse a lot of it, because Wasm
and JVM bytecode work fundamentally different in many aspects.

6.1 Introduction to WebAssembly Bytecode Format

WebAssembly bytecode gets released as a unit that is called a module. A module contains func-
tions, code, memory, data, imports and exports. Code is organized in functions that contain a list
of bytecode instructions. Functions can hold data in local variables, but individual instructions
use an operand stack to process data.

There are four basic data types: Integers, floating-point numbers, vectors and references.
Integers represent integer numbers, we take a closer look at those in chapter 6.3. Floating-point
numbers represent real numbers, and we deal with those in chapter 6.4. Vector data is a type
that can hold a number of shorter numeric data types and perform operations on those at the
same time to increase performance. This concept is explained further in chapter 6.5. Reference
data is used to point to another object. It serves as a memory-safe replacement for pointers. The
types of references and its use are discussed in detail in chapter 6.9. There are other forms of
types in Wasm like function types, but these are abstract types used for Wasm’s strict formal type
system, and cannot hold data.

Wasm uses linear memory, which is just an uninterpreted array of bytes. There are no memory
addresses, just indices into the memory array. An in-depth look into memory is given in chapter
6.6.

Wasm modules do not serve as standalone applications, they are intended to run inside a host
environment. Therefore a Wasm module can communicate to the outside by importing and
exporting functions and data. A Wasm module is able to call host functions and vice-versa.

6.2 Functions

6.2.1 Introduction

Functions are the basic architectural element in which code is separated. Each function can
have any number of inputs and any number of return values.

Functions contain code, and since Wasm is a bytecode, code is just a list of instructions. Each
instruction performs a specific action. Instructions can perform calculations, read or write data,
or change the control flow.

27

6 Designing a Wasm frontend for CBMC

6.2.2 Operand stack

WebAssembly is a bytecode, that means it can’t run natively on an operating system and need
some kind of runtime environment. Contrary to machine code, bytecode does not target a
physical processor, it targets a virtual processor with a virtual instruction set. WebAssembly
creators designed Wasm to be a stack machine. [10] A stack machine is a machine model that
stores inputs and outputs of instructions on a stack. This is contrary to a register machine, where
instruction data is stored in registers, like in many modern CPU architectures. Stack in this case
means a first-in-first-out data structure, with two defined operations:

• Push: Add data on top of the stack
• Pop: Retrieve data from the top of the stack

Instructions for a stack machine pop their arguments off the stack and push their results on the
stack. To illustrate that with an example, we use the t.add instruction. This instruction adds two
numbers together. t denotes the type, there is the same instruction for each type, but we look at
that later in detail. Like one would expect, the add instruction has two inputs, and one result.
When the add instruction gets executed, the two values from the top of the stack get popped,
and the result of the addition gets pushed to the top of the stack. Here is an example of the stack
manipulation for simple addition: 19

7
. . .

→

26
. . .

 (6.1)

For each individual instruction it is defined how many inputs and outputs they have, which can
be any number. There are instructions with no inputs like t.const that pushes a constant on the
stack, and there are instructions with no outputs like the t.store instruction, that takes a value
from the stack and stores it in memory.

This stack-based approach is different from the GOTO language. Instead of storing intermedi-
ate results on a stack, the GOTO language stores intermediate values in variables, or combines
multiple operations together in a tree of expressions. What we need to do is to “compile” the
stack away, similar to how a just-in-time compiler would do.

The GOTO language consists of statements and expressions. There are instructions like most
arithmetic instructions that have some inputs and push a single result to the stack. This is the
same as an expression in the GOTO language — it evaluates to a single value. Other instructions
change the state of the program, for example instructions that set local variables or store data in
memory. These would be translated into statements.

Listing 11 shows an example Wasm code to explain the next steps. We have not talked about
Wasm code in depth so I have annotated each instruction. One neat property of Wasm bytecode
is that the operand stack is statically determinable. That means we can determine how the
operand stack looks at any point of execution without actually executing the code. This means
we can “simulate” the stack to help us transform the code into expressions. This is called
symbolic execution.

28

6.2 Functions

local.get 0 ;; push the first parameter on the stack
i32.const 10 ;; push the constant 10 to the stack
i32.add ;; add two values from the stack together
local.get 1 ;; push the second parameter on the stack
i32.mul ;; multiply two values from the stack
return ;; return whatever is on the stack

Listing 11: Example WebAssembly code

Looking at the example code we have code of a function that has two parameters and returns
a value. If one knows the basics of how the operand stack works, it can be easy worked out that
an imperative representation would look like, as shown in listing 12.

return arg1 * (arg0 + 10)

Listing 12: Imperative pseudocode

The way we can transform our Wasm code into expressions is by simulating the stack. We
have to do this instruction by instruction. But we do not actually execute the program, we would
not know the values anyway. Instead we place expressions on the stack. We know that whenever
an instruction returns one result, it might me treated as an expression. All the instructions in
our example do this, bar the return. So we translate each instruction to an expression, and put
this result on our symbolic stack.

Instructions like add and mul consume inputs from the stack. When we do this, we create a
new expression and link together the previous ones we consume from the stack. In the GOTO
language, an addition or multiplication expression takes two arguments, both of which are
expressions themselves.

Figure 6.1 shows how the symblic stack looks after each instruction.

This seems like a nice way to chain together our expressions. However we left out the last line
because the return instruction is a statement. Whenever we have an instruction that translates
to a statement, we need to emit a statement for our GOTO program. In this case, we set the
return value to the expression on top of our symbolic stack.

The result that we want after transformation is a linear list of GOTO instructions. Therefore
we start with an empty list, where we add each statement which we encounter. We do this
for every instruction in our function, and with this algorithm we can transform our Wasm
bytecode into GOTO programs, which will be processed further by the CBMC backend. How we
process individual each individual instruction and how we handle special cases will be treated
in subsequent chapters.

6.2.3 Local Variables

The operand stack is not always sufficient enough to hold all the data needed for function
execution. That is why functions can define a list of local variables that can store values. These

29

6 Designing a Wasm frontend for CBMC

Figure 6.1: Symbolic stack execution

values are only accessible from inside the function and are accessed using an index. Index 0 is
used for the first local variable, index 1 for the second and so on.

When functions have input parameters, they get stored in the first local variables. Local
variables holding parameters do not have to declared, the first declared local variable starts
at the smallest index that does not hold a parameter. When a function has for example two
arguments, then the first two local variables store the values of the arguments. The variable at
index 2 would be the first declared local variable. Parameters only hold their value initially and
can be subsequently overwritten. Local variables that do not hold parameters get initialised
with a default value, which is 0 for any numeric type and null for references.

There are three local variable instructions, local.get, local.set and local.tee. Each of them
includes a static index after the instruction to specify which variable is affected. The get in-
struction accesses a variable and pushes the result to the operand stack. the set instruction
takes a value from the stack and stores it in a local variable. The tee instruction was added for
convenience, it sets a local variable and leaves the value on top of the stack.

During transformation we treat the local variables as normal variables. GOTO programs allows
us to define them and assign values to them. Since Wasm bytecode does not store the names of
local variables, we have assign them generic names like local0, local1, etc. The get instruction
returns a value and does not change the state of the program, so it is an expression. The GOTO
language provides us with a symbol access expression, which we can use for that.

The set instruction gets translated into an assignment statement, since it assigns a variable.
The left hand side of the assignment is the name of the variable, and the right hand side is the
expression that we take from the stack. The corresponding type class is code_assignt. The tee
instruction is the same as the set instruction, but instead we leave the expression on the stack.

In GOTO programs we have to declare each variable we use and its lifetime. For this we use
the DECL and DEAD GOTO instructions. The DECL statement does not contain an assignment,

30

6.3 Integer Data

it just declares a variable and its type. GOTO programs mandate that the lifetime of a variable
should be as short as possible. That means that each declaration should be as close to the first
use as possible, and each DEAD should be as close as possible to the last use of the variable. To
place the declarations correctly, we can keep a flag in our data structure that we use to hold the
local variables. Initially it is set to false for all non-argument variables. When an instruction
uses the variable and the flag is still false, we know that we use it for the first time. Each time
this happens we add a declaration statement. If the first use of a variable appears to be a get
instruction, which is possible, we add an assign statement after the declaration that initialises
the variable to its default value.

After we processed the whole function we need to end the lifetimes of the variables. For this
we use a similar approach. We iterate through the GOTO statement list backwards and add an
end of lifetime statement for each variable after its last use. If the last use is a set instruction, we
could even optimize it away and delete it, since an assignment without use is a form of dead
code.

6.2.4 Return values

Functions in Wasm can have an arbitrary number of return values. When a function has ended
execution either through reaching the end of the code or through executing a return statement,
the values sitting on top of the stack are the values the function returns. The types and amount
of return values are determined by the type signature of the function. If there are any other
values left on the operand stack, they are discarded. The return values are then pushed to the
calling function’s stack.

In GOTO programs the function return value is set using a special statement. An issue is that
in GOTO programs each function can only have one return value. To circumvent this restriction,
we have to combine the return values in a single structure. This is possible GOTO language
supports creating a complex type that has named members, like a struct in C or an object in
Java.

So when we have a function with a single return value, we can set it directly. Whenever a
function has more than one return value, we build a structured type out of all return values. In
the calling function we create a variable out of this complex type that gets this data back through
the function call statement.

We can then use the values by using member access on this variable.

6.3 Integer Data

6.3.1 Introduction

Wasm defines two integer data types, i 32 and i 64, which represent uninterpreted 32-bit and
64-bit integers. The reason for not having signed and unsigned integers is that many instructions,
like normal addition, behave semantically the same between regardless of the signedness of
the value, the result has the exact same bit pattern in all cases. Whenever this is not the case
then there are two variants of an instruction, one with signed and one with unsigned semantics.

31

6 Designing a Wasm frontend for CBMC

Signed interpretation uses two’s complement, which is the same as signed integers in GOTO
programs.

Therefore in GOTO programs, we have to use uninterpreted integers of 32 and 64 bits to
directly represent i 32 and i 64 types. If an instruction requires a signed or unsigned value, we
have to add a type cast to a signed or unsigned integer.

6.3.2 Shorter integer types

Wasm also indirectly supports 16-bit and 8-bit integers. They are useful for many things like text
encoding. One cannot declare values directly with this type, but there are many instructions that
convert between these types and longer types, for example for writing to memory. For example
the instruction i32.load8_s reads an 8-bit signed integer from memory and extends it to 32 bits,
preserving the value. There is a similar instruction that stores only the last 8 bits of an i 32 value
to memory.

Also Wasm supports shorter integers in packed types. Packed types are interpretations of
vector data, which will be covered in detail in chapter 6.5. There exist shapes i 8x16 and i 16x8,
which means that the 128-bit vector data gets interpreted as 16 8-bit integers or 8 16-bit integers.

Shorter integer arithmetic can be emulated by using a longer type and ignoring the first bits.
This is possible because ignoring the first bits is equivalent of interpreting each result mod 2n ,
where n is the bit width of the shorter type.

6.3.3 Overflows and undefined results

A very common source for bugs regarding integer values are overflows. These occur when
operations result in values outside of the number range of the specified type. In many languages
these type of errors do not interrupt the program or send any kind of warning, because checking
every operation for overflow comes at a runtime cost. Overflowing an integer can result in
defined results using wrapping arithmetic, but in some cases even undefined behaviour can
occur. [12, §6.5 5]

GOTO programs are equipped with an expression type that can detect overflows. We are able
to assert that no overflow occurs by adding an assertion to our program as shown in listing 13.

1 c = a + b
2 becomes
3 ASSERT not(binaryoverflow(add, a, b))
4 ASSIGN c := add(a, b)

Listing 13: Overflow assertion

In the C frontend, it places overflow checks before signed integer arithmetic operations,
because a signed overflow is undefined behavior in C. Unsigned overflow checks can be added
with a flag. In Java, overflow behavior is defined using wrapping arithmetic, so JBMC does not
add overflow checks in front of arithmetic operations.

32

6.3 Integer Data

In Wasm, the overflow semantics are like Java well defined in all cases using wrapping arith-
metic. The operands are treated as unsigned integers and the result is the mathematical result
mod2n , where n is the bit width.

It is difficult to place overflow checks in Wasm bytecode, because the type system does not
differ between unsigned and signed integers. The reason is that signed and unsigned integers
have different number ranges, and therefore different overflow semantics. To demonstrate this,
I show an example using 8-bit integers for simplification:

11111111+00000111 = 00000110 (bit pattern)

−1+7 = 6 (signed integers)

255+7 = 6 (unsigned integers)

This clearly shows that in the example an unsigned overflow occurs, but not a signed overflow.
Since additon has no signed or unsigned variants, we cannot presume that additon uses signed
or unsigned integers. Therefore it is impossible to add reliable overflow checks for addition, the
same principle applies to subtraction and muliplication.

Some arithmetic operations lead to undefined results, because the result of the operation is
undefined in mathematics. A classic example is the division of an integer by 0. This is an error in
any case and leads to program termination. We have to explicitly check for these cases and add
assertions to find ensure that these cases do not occur.

6.3.4 Integer operation instructions

In this section we look at integer operations that are defined by Wasm and determine how we
can convert them into GOTO programs, and what we have to look out for. In Wasm, an operation
is an instruction that has the form t .op where t is the type and op is the operation. Whenever
there is an operation that has different semantics for signed and unsigned integers, the notation
is t .op_s and t .op_u. The type for the following instructions can be either i 32, i 64 or a packed
integer type.

Packed integer types are vector interpretations and are explained in detail in section 6.5. They
consist of a base type and a number of lanes. The operations included in this section perform
operations on each lane individually, which is semantically equivalent to performing them on
scalar types.

The characteristic of these operations is that they have no side effect, they pop their inputs
from the operand stack and push their results back to the operand stack.

Arithmetic operations

The add, sub and mul operations perform addition, subtraction and multiplication of two
integers. They do not differ between signed and unsigned values, so we can use them even with
uninterpreted integers.

The div and rem operations perform integer division and the remainder operations. The
remainder operation calculates the remainder of a division, for example: r em(11,3) = 2

33

6 Designing a Wasm frontend for CBMC

The division and remainder operations have variants for unsigned and signed semantics.
These get converted into the same expression type, because CBMC stores the signedness with
the type and not the operation. We therefore have to make sure that integers have the correct
type, and if not we have to add a type cast before the operation.

The division and remainder operations have inputs that result in undefined values. In this
case, the result will be a trap and the execution terminates. The first case happens when the
second operand of the division and remainder operations is 0. The other case is when in a
signed division the first operand is I N T _M I N and the second operand is −1. The division −2n−1

−1
results in 2n−1, which is outside the value range. So we have to add an assertion before every
division and remainder operation for the first case. If we have a signed division, we have to add
an additional assertion for the second case.

Bit-manipulation operations include and, or, xor, left and right shift and left and right rotation.
These operations interpret integers not as numbers, but as a list of bits. The add, or and xor
operations construct the result by using boolean operations on each bit of both inputs. add
performs conjunction, or performs disjunction and xor performs exclusive disjunction.

The left and right shift operations take the first operand and shift the individual bits to the
left or the right. The amount of places to shift is determined by the second operand. One might
think that the bit shift operations have a lot of cases where the result is not defined. That is
because for example in C, if the second operand is longer than the bit width or negative, the
behavior is undefined. [12, §6.5.7] Wasm bytecode resolves this problem by treating the second
operand as modulo n, where n is the bit width. That means for example that a shift by −1 of a
32-bit integer performs a shift by 31 places. This implies that all results are well-defined and we
do not have to place assertions.

In a left shift, the bits that get added from the right are zero bits. The right shift comes in two
variants. The unsigned right shift or logical right shift fills the bits that get added from the left
with zero bits. The signed right shift or arithmetic right shift fills the bits from the left depending
on the leftmost bit of the original value, therefore keeping the sign.

The left and right rotation operations behave similar to the bit shift, but the bits that get
removed from one side get added on the other side. Like the bit shift operations, the second
operand is interpreted modulo the bit width, so all results are defined. All shifts can be directly
translated into the expression types the GOTO language provides.

Unary integer operations take a single input and return a single result. There are three
operations, clz, ctz and popcnt. The clz operation stands for count leading zeroes and counts
how many of the first bits of an integer are 0. The ctz operation stands for count trailing zeroes
and counts how many of the last bits are 0. The popcnt instruction performs the population
count operation, it counts how many of the bits are set to 1. Even though there are no direct
representations in C or Java for these operations, there exist expression types in CBMC for them.

Comparison instruction compare two values and output a boolean result. The result is always
of type i32 and is either the value 1 if true and 0 if the comparison does not hold. There are 6
operators, they compare if the first operator is equal, not equal, greater, greater or equal, lesser
and lesser or equal than the second operand. The equal and not equal operation work regardless
of signedness, but the other instructions come in two variants each. In the GOTO language,
there exists an expression class for all of them.

34

6.3 Integer Data

The remaining instructions are the const and eqz instructions. The const instruction pushes
a static value on the operand stack. This can get converted into a constant expression. The
eqz instruction returns 1 if the operand is 0, and 0 otherwise. This behavior is identical to the
negation operator ! in C. The GOTO language provides a not expression for this case. We have to
be careful because the expression expects the input to be of type boolean. We therefore have to
add a type cast from int to boolean.

The following instructions do not exist for i32 and i64 types, but can be performed on vector
data that represents packed integers. Vector data gets explained more detailed in chapter 6.5.
Because the following instructions work with packed integer data, it made sense to put them
here.

The abs instruction calculates the absolute value for each lane, and there is an abs expression
in the GOTO language, which we can use. The neg instruction performs lane-wise negation
which is equal to multiplying by −1. We can convert it into the neg expression. Both of these
instructions have an edge case where the input is INT_MIN and the theoretical result would be
outside of the number range. In this case the operation is defined to overflow and the result
would be INT_MIN and does not trap. Also both of the operations implicitly require the values
to be signed.

Then there are lane-wise minimum and maximum instruction in both signed and unsigned
variants. These can be transformed into a ternary if expression like this:

min(a,b) = if(less_than(a,b), a,b) (6.2)

The next instructions we look at are lane-wise saturating addition and subtraction. In satu-
ration arithmetic, there is no overflow, in this case the result will just be the maximum value.
There is no corresponding expression in the GOTO language, and no operation in SMT-LIB that
covers this case. As a result we have to implement the functionality ourselves.

The saturating operations return the maximum if the result of the operation would be greater
than I N T _M AX , in other words if the computation overflows, then the result will be I N T _M AX .
The same happens when the result is smaller than the minimum value, which would be an
underflow, the result will be I N T _M I N . We have to define the conditions for which an over- or
underflow would happen.

Overflow in a signed addition of two numbers a,b happens when the following conditions are
fulfilled:

a > 0∧b > I N T _M AX −a (6.3)

Similarly, underflow happens under the follwing condition:

a < 0∧b < I N T _M I N −a (6.4)

35

6 Designing a Wasm frontend for CBMC

It seems easy to treat signed subtraction the same as signed addition with the second operand
negated, but then we would run into a problem if the second operand happens to be INT_MIN.
Signed subtractions of numbers a,b overflow when:

a > 0∧b < a − I N T _M AX (6.5)

The following condition leads to an underflow:

a < 0∧b > a − I N T _M I N (6.6)

Unsigned over- and underflows are a little bit easier. Unsigned addition of numbers a,b can
only produce an overflow when:

b > I N T _M AX −a (6.7)

Unsigned addition cannot underflow, and by the same logic unsigned subtraction cannot
overflow. Unsigned subtraction of numbers a,b underflows under the following condition:

b > a (6.8)

So depending on the operation we need to check for the conditions and return INT_MAX in
the case of an overflow and return INT_MIN in the case of an underflow. Listing 14 shows how a
transformation of the saturating signed addition may look like.

1 def add_sat_s(a: expr, b: expr) -> expr:
2 return if(
3 and(
4 greater_than(a, 0),
5 greater_than(b, minus(INT_MAX, a))
6),
7 const(INT_MAX),
8 if (
9 and(

10 less_than(a, 0),
11 less_than(b, minus(INT_MIN, a))
12),
13 const(INT_MIN),
14 plus(a, b)
15)
16)

Listing 14: Pseudocode transformation of add_sat_s

36

6.4 Floating Point Data and Instructions

The next instruction is the avgr_u instruction. This instruction takes two packed integers and
computes the average for each lane. If the average is not an integer, the result will be rounded
towards positive. This can be transformed into a chain of addition and division by 2. The tricky
part is that first both operands need to be divided by 2 and then added together, otherwise the
addition may overflow if the numbers are large, leading to the wrong result.

Probably the most obscure WebAssembly instruction is the saturating integer Q-format round-
ing multiplication i16x8.q15mulr_sat_s. The Q format is a fixed point format representing real
numbers. Q format addition and subtraction can be achieved through normal saturating addi-
tion and subtraction, but multiplication is a bit more complicated. Wasm supports lane-wise
multiplication of Q15 numbers stored as i 16 values. The operation has the following formula:

q15mulr_sat(a,b) = sat((a ·b +214) >> 15) (6.9)

The sat function represents the saturation – the result is clamped between the maximum and
minimum value of the 16-bit signed integer. For the calculation the saturation function gets
converted into a chain of if expressions, and the rest gets converted according to the formula.

6.4 Floating Point Data and Instructions

Another common primitive data type are floating-point numbers. Floating-point numbers rep-
resent real numbers, and the representation and behavior is specified in the IEEE 754 standard.

Wasm defines two floating-point data types f32 and f64. These are bitvectors of length 32
and 64 bits. The representation is equal to the float interpretation of bitvectors in the GOTO
language.

Instructions for floating-point types overlap a bit with integer instructions. Since there is no
unsigned floating-point arithmetic, there is always just one variant of every instruction. We can
reuse the expression types for addition, subtraction, multiplication and division. This works
because when CBMC transform the GOTO program into a clause for the solver, it checks the
type of the values and when the type is a floating point number, it tells the solver to use floating
point logic. The comparison instructions that compare two values can be reused in the same
way.

Then there are many instructions native to floating point values. These mostly represent
mathematical operations on real numbers, like the square root operation. The problem here
is that these instructions do not have an existing expression type in CBMC. The reason is that
neither C nor Java has these operations as language built-ins. Instead these operations are
implemented using library functions. In C, there is the math.h header that defines a lot of
mathematical functions. In Java, the java.lang.math class offers a lot of functionality.

C and Java code that performs these library calls can be checked by CBMC as well. This works
because CBMC provides implementations of those library functions. For example the square
root function in C could be implemented using an approximation algorithm, or by using inline
assembly to perform the processor instruction directly, depending on the system and library.
The CBMC implementation is written to work well with CBMC and automatically performs
checks for example to assert that the input is positive. As a first option, we could do the same.

37

6 Designing a Wasm frontend for CBMC

Even though Wasm has no standard library, we treat these instructions as if they were library
calls and replace them with semantically identical functions that include only operations that
we can transform.

Listing 15 shows an example of an implementation of the f32.min instruction.

1 (func $min (param f32 f32) (result f32)
2 local.get 0 ;; first argument
3 local.get 1 ;; second argument
4 f32.gt ;; if first > second
5 if (result f32)
6 local.get 1 ;; return second argument
7 else
8 local.get 0 ;; else return first argument
9 end

10)

Listing 15: Wasm implementation of i32.min

This could be one approach. Another idea is to actually model these as new expressions.
Since CBMC transforms GOTO programs into an SMT formula, we can have a look if the solvers
understand these operations natively. SMT-LIB2 is the standard interface for SMT solvers. [2] If
we look at the FloatingPoint theory, we see that there are functions for square root, negation,
absolute value, minimum and maximum. The Wasm instructions floor, ceil, trunc and nearest
could be transformed into the same fp.roundToIntegral SMT-LIB2 function with a different
rounding mode. This would only leave the copysign instruction without direct SMT support.
This instruction takes two operands, and returns the value of the first operand with the sign of
the second one. For this we would have to take the first approach and reimplement it in Wasm,
but this should be trivial.

So there are two possible ways to handle this. The first is to reimplement the instructions as
functions, and the second is to directly translate those into SMT instructions. The first approach
would have the advantage of fitting in line with the way that CBMC and JBMC work. There would
be no changes to the CBMC backend and it would work independently of the solver being used.
The downside is that it would need twice the code because each instruction need to modeled
in f64 and f32. With the second approach, we outsource the work to the solver which could
be more performant. Also it is more in the spirit of Wasm since those instructions are direct
operations and no library functions. But we need to make backend changes and we might need
extra code for other types of solvers, for example SAT solvers.

Here is an overview of floating point operations and their representations in either CBMC
expressions or SMT-LIB2 functions. For each of these instructions exist two variants, one for f32
and one for f64 values.

Unlike integers, floating point operations are well defined for all cases and do not trap. If a
value is divided by zero, the result is either positive infinity or negative infinity, depending on
the sign of the value and of the zero. If zero is divided by zero, the result is the NaN value, the
same result happens when taking the square root of a negative number. There is also no real

38

6.5 Vector data and SIMD instructions

concept of overflow, if a result of an operation is greater than the number range, which is very
big, then the result will be an infinity.

6.5 Vector data and SIMD instructions

6.5.1 Introduction

The next data type we look at is the vector data type. Currently only one variant exists, the type
v128. Vector data is a data type that is designed to hold a packed set of values of a smaller type.
Special SIMD (single instruction, multiple data) instructions can be used to perform operations
on those values at the same time.

These instructions interpret the v128 type as a specific shape txn. A shape consists of of type
t and a number of lanes n. For example the shape i32x4 consists of 4 lanes of i32 values. The
underlying data is just a 128 bit vector, but the instructions operate on the data of a specific
shape. The following shapes are possible: i8x16, i16x8, i32x4, i64x2, f32x4 and f64x2. Packed
data is a general term when describing vectors that hold data that is interpreted in such a shape.
There are also some instructions that interpret the vector as v128, these interpret the data either
as a 128-bit integer or just as a bit pattern.

The vector type was added because one of the goals of Wasm is high performance. There
are hardware registers and instructions on many modern CPU architectures that can do these
kinds of operations. With these, the Wasm code can gain a lot of performance by doing multiple
integer or floating-point operations in parallel.

To show an example, we have to compile the C code with the compiler option -msimd128, at
least when using Clang.

1 void multiply_arrays(int32_t* out, int32_t* in_a,
2 int32_t* in_b, int32_t size) {
3 for (int32_t i = 0; i < size; i++) {
4 out[i] = in_a[i] * in_b[i];
5 }
6 }

Listing 16: Code that uses SIMD instructions for optimization

Listing 16 shows a function that gets two arrays of integers as input. This code was taken from
a blog post of the WebAssembly implementation in the V8 JavaScript engine. [9] The arrays are
assumed to be the same size and for each element the numbers get multiplied and put into a
new array. The resulting Wasm code is too long to put it here and explain it in detail. But in
general, it tries to pack the integers into v128 types as good as possible. This is cheap, because in
an array the integers are already stored next to each other in memory. This results in the costly
multiplication instruction only being done once for four integers at a time. Instead of i32.mul
the instruction i32x4.mul will be used.

39

6 Designing a Wasm frontend for CBMC

6.5.2 Implementation considerations

To implement this in CBMC, first we need to think which type class we need. Since it is repre-
sented as 128 bits, it is clear that it should be modeled as a bitvector with a width of 128. This is
the easy part, now we need to figure out how we treat it as a specific shape when instructions
execute operations on that shape. For example one instruction may treat the vector as i16x8,
and the next as i32x4. Whether or not it makes sense to do this does not matter, it would be an
allowed piece of code.

The best way might be to leave it as an uninterpreted 128-bit bitvector whenever possible, and
only cast it into the specific shape whenever needed. When we cast it to a shape, we need to cast
it to a sequence of values. For example when we perform the instruction i32x4.add, the vector
would need to be cast into 4 i32 integers to perform the individual operations. To do this, we can
use the extractbits expression. This expression has 3 inputs, a source value, a start index and a
target type. The result of the expression is a bit pattern of the target type, that was extracted of
the source value at the start index.

1 # Conversion from v128 to i32x4
2 i32_1 = extractbits(vector, 0, i32)
3 i32_2 = extractbits(vector, 32, i32)
4 i32_3 = extractbits(vector, 64, i32)
5 i32_4 = extractbits(vector, 96, i32)

Listing 17: Extractbits example

Listing 17 shows how a conversion from v128 to i32x4 would look like in pseudocode.
To transform the shape back into 128-bit bitvector, we need to use the concatenation operator.

The GOTO language supplies a concatenation expression type for that. That takes an arbitrary
amount of input bitvectors and a target type, and concatenates them.

This gives us a manual how we need to transform most of the vector instructions that operate
on a shape txn:

• Cast the m input vectors into sequences S1, ...,Sm of n values of type t
• For each k ∈ {1, ...,n}, perform the operation op on S [k] of each sequence
• concatenate the results together

With that in mind, we can now provide an example transformation for the i32x4.add instruc-
tion:

Listing 18 shows how such an instruction can be transformed. Note that in this example
concat, plus and extractbits are not functions, they are constructors for expression types. That
means that whatever the Wasm program does with the resulting v128 like just putting it on the
operand stack, or storing it in memory, we have to replace that with this huge tree of expressions.

This can even be generalized, since there are similar instructions that work on multiple shapes.
Listing 19 shows an example of such a general transformation. result_list gets initialised with

an empty list, where the result of the operation is appended for each lane.
It is also important to remember that the typing does not differantiate between unsigned and

signed integers. Some instructions come in an unsigned and signed variant where it is clear to

40

6.5 Vector data and SIMD instructions

1 def transform_i32x4_add(
2 vector1: expr(bv128),
3 vector2: expr(bv128)) -> expr(bv128):
4 return concat(
5 [
6 plus(
7 extractbits(vector1, 96, int32),
8 extractbits(vector2, 96, int32),
9),

10 plus(
11 extractbits(vector1, 64, int32),
12 extractbits(vector2, 64, int32),
13),
14 plus(
15 extractbits(vector1, 32, int32),
16 extractbits(vector2, 32, int32),
17),
18 plus(
19 extractbits(vector1, 0, int32),
20 extractbits(vector2, 0, int32),
21)
22],
23 bv128
24)

Listing 18: Pseudocode transformation of i32x4.add

see how the integer data needs to be interpreted. But some instruction, for example negation,
implicitly expect the integer data to be signed, that is important to consider when extracting the
lanes.

It is clear that when multiple vector operations are done in succession, the expression tree gets
exponentially larger, since each input gets copied n times into the resulting expression where n
is the number of lanes. It is possible to decrease the decrease the size of that expression tree by
performing a reduction. When we look back at the example in listing 18, we notice that when we
replace one of the input vectors with such an expression, then we have many occurences of the
extractbits constructor where the first argument is a concatenation expression.

Listing 20 shows how such a construct may look. In this example exprn is placeholder for an
expression that evaluates to an i32 integer. This piece of code concatenates 4 i32 expressions,
and takes the first 32 bits of the result. It is clear that in this case the extractbits and concat
operations are redundant, in this case the whole expression is equal to just expr1.

We can check for this reduction step anytime we place the extractbits constructor. This only
works when the concatenated expressions and the bit extraction are of the same type. But
chained vector operations can be exptected to target the same shape, so this might be the case
most of the time.

41

6 Designing a Wasm frontend for CBMC

1 def transform_simd_binary_instruction(
2 vector1: expr,
3 vector2: expr,
4 shape_type: type
5 shape_lanes: int
6 op: expr_type) -> expr:
7

8 result_list = []
9 for i in shape_lanes - 1 .. 0:

10 result_list.append(op(
11 extractbits(vector1, i * sizeof(shape_type), shape_type),
12 extractbits(vector2, i * sizeof(shape_type), shape_type)
13))
14

15 return concat(result_list, bv128)

Listing 19: Pseudocode transformation of general binary SIMD instruction

1 extractbits(concat([expr1, expr2, expr3, expr4], bv128), 0, i32)

Listing 20: Reduction opportunity

It is possible that this type of reduction may be done by the solver as well so it does not have
any performance gains, but it still can reduce the size of some expression trees and help with
performance and memory usage.

6.5.3 Vector instructions

Now we look at individual instruction and how it is possible to transform them into parts of
GOTO programs. Many of those instructions have the pattern shape.op where shape is a shape
of packed integers or floating point numbers and op is an operation that is already covered in
chapter 6.3 or in chapter 6.4. These instructions get transformed using an algorithm described
in the previous section.

In this section I want to cover the following types of instructions:

• Instructions that operate on v128 directly
• Instructions that convert between packed types

v128 Instructions

These include the v128.const instruction, which can be treated the same as the other constant
integer instruction. The bitwise instructions v128.and, v128.or and v128.xor also work the same
as corresponding integer instructions, just with a longer bit width. The instruction v128.andnot
can be transformed into a bitwise and expression where second operand is run through a bitwise
not expression. The v128.bitselect instruction takes 3 v128 operands. For each bit, if the third

42

6.5 Vector data and SIMD instructions

operand is set, take the bit value of the first operand, otherwise the bit value of the second
operand. This operation can be translated into a chain of logic operators, this is taken directly
from the WebAssembly specification:

bitselectN (i1, i2, i3) = orN (andN (i1, i3),andN (i2,notN (i3))) (6.10)

The instruction v128.any_true returns an i32 constant value of 1 if at least one bit is set,
otherwise zero. This is semantically equal to comparing against a 128-bit 0 number, and negating
the result.

Vector type conversions and operations

Wasm offers many instructions that convert between different packed types and between packed
and non-vector types. There are also some operations where the shape of the input differs from
the shape of the output, these are included here as well.

It is possible to extract and replace single lanes in a packed type. The instructions are called
shape.extract_lane and shape.replace_lane. Both of these instructions take a static argument
which is the index of the lane that will be extracted or replaced. The value to replace, or the
result of the extraction, is taken from or pushed to the operand stack. It is easy to see that the
extract_lane instruction can be transformed into the extractbits expression. The replace_lane
instruction can be tranformed into a chain of concatenation operations, where all elements are
extracted from the original vector except the one to be replaced, where we take the value from
the stack.

Another way of converting a scalar type to a vector is with the introduction shape.splat. This
consumes a scalar value from the stack and transform it into a vector where each lane is given
that value. We can emulate this behavior in our program by using the concatenate expression.

The instruction i32x4.dot_i16x8_s performs lane-wise multiplication on i16x8 values. The
result is sign-extended to 32 bits and adjacent lanes are added together. Listing 21 shows how
this transformation can look. The transformation is only shown for the least significant 32 bits
of the result to show the general idea, the rest is done in similar fashion and the four parts are
concatenated to the result.

1 add(
2 mult(
3 cast(extractbits(vector1, 0, i16), i32),
4 cast(extractbits(vector2, 0, i16), i32)
5),
6 mult(
7 cast(extractbits(vector1, 16, i16), i32),
8 cast(extractbits(vector2, 16, i16), i32)
9)

10)

Listing 21: Pseudocode transformation the i32x4.dot_i16x8_s instruction

43

6 Designing a Wasm frontend for CBMC

The instruction shape1.narrow_shape2 takes two vectors of shape shape2 and produces a
new vector of shape shape1. The result vector is constructed by taking alternating lanes form the
first and second input. To fit these into one vector, the bit width of shape1 is half of shape2, so
the individual lanes will be narrowed to half the bit width. This narrowing is saturating, because
of that there are signed and unsigned variants of the instruction.

The instructions shape1.extend_low_shape2 and shape1.extend_high_shape2 where shape1
and shape2 are integer shapes extend one half of a smaller lane vector into a vector where the
length of a lane is twice as many bits. This extension can either be signed or unsigned. The
conversion can be made by extracting each lane of half the vector, extending using a type cast
and concatenating the results.

Extended multiplication performs lane-wise multiplication of either the first or second half
of the vector and extends the result so no overflow can happen. The name of the instruction
is shape1.extmul_low_shape2 and shape1.extend_high_shape2 depending on which half of
the input vector gets used. This can be converted by extracting each lane of half of the vector,
extending them with a type cast. Then a lane-wise multiplication is performed and the results
are concatenated. There are signed and unsigned variants of this because the number can be
zero-extended or sign-extended.

The instruction shape1.extadd_pairwise_shape2 takes a single vector as input. It extends
lanes into wider lanes by adding neighboring lanes together. The extension can be either zero-
extended or sign-extended. Again this can be implemented using extracbits, type cast, addition
and concatenation expressions.

There are also normal conversions between integer and floating-point shapes. The instruc-
tion i32x4.trunc_sat_f32x4 converts lane-wise each f 32 into an i 32 integer, either signed or
unsigned. The conversion is saturating if the float value is ouside the integer range. Rounding
gets done towards zero. Similarly the instruction i32x4.trunc_sat_f64x2_zero converts from
f 64 to i 32. The two result lanes are the low lanes, the remaining integer lanes are zero. These
instructions can be converted into type conversions and if-expressions.

6.6 Linear memory

6.6.1 Introduction

An important factor of a program and its logic is how it uses memory. Memory refers to the
portion of main memory from a computer that is reserved for that program. Many language
runtimes seperate between a stack that stores local variables, and a heap that stores complex
data. Objects in the heap are pointed to by some kind of pointer or reference.

Memory and especially heap memory is a very common source of bugs, especially in lan-
guages that use manual memory management. Trying to read an invalid address can lead to
a segmentation fault, causing program termination. Continously requesting memory without
freeing can cause the machine to run out of memory. Other types of memory errors can cause
unspecified program behaviour, like using memory after it has been freed.

44

6.6 Linear memory

6.6.2 Linear Memory Model in WebAssembly

Since Wasm is designed to be compatible with various programming languages, it needs a very
flexible approach to memory. Local variables are stored normally within the function stack
frame. The heap is modelled very simply, it is an untyped linear array of bytes.

Available memory needs to be defined in the module using units of page size. This page size is
equivalent to 65536 bytes, since Wasm designers found this to be the lowest common page size
on modern hardware. [10] The Wasm code can access all of the memory available.

There are load and store instruction for all the data types, that move data between the linear
memory and the operand stack. Instead of a pointer data type, memory gets accessed using an
i 32 index, with the first byte of memory starting at 0. Therefore the memory can be thought of
a global byte array. Currently, only 1 memory per module is allowed, so every memory access
implicitly accesses memory with index 0. In future versions more than one memory per module
can be declared.

Wasm has a very strict approach to avoid undefined behavior regarding memory. When a
Wasm module gets instantiated, all the available memory gets initialised with zero bits. And
each memory access gets checked at runtime if it is within bounds.

Now we need to think how we translate memory access to GOTO programs. The downside of
Wasm’s memory model is that we can never free any memory. Each section of available memory
is always allocated and valid. It is possible for a Wasm program to write to a section in memory
at the beginning and to read that section somewhere at the end of the program. The upside is
that we do not need to use logic to keep track which section of memory is valid and which has
been freed.

To explain how we proceed we use the code example from listing 22.

1 (func $mem_test (result i32)
2 i32.const 5
3 i32.const 42
4 i32.store ;; store the i32 42 at memory index 5
5 i32.const 5
6 i32.load ;; load the i32 at memory index 5
7 return ;; should return 42
8)

Listing 22: Store and load example

Here we have an example usage of the i32.load and i32.store instructions. The i32.store
instruction takes two inputs, the first is the value we store in memory, and the second is the
index. Remember that the operand stack is a stack, so the value we last pushed on it is the first
value we take from it, which means that in this case we store the integer 42 at memory index 5.
Then we load the value back from memory with the i32.load instruction, which consumes the
memory index from the stack.

We can reuse some ideas from chapter 6.2.3. We can assume that we need to translate the store
instruction into some kind of assignment, and the load instruction into some kind of expression.

45

6 Designing a Wasm frontend for CBMC

The first idea is to have a similar data structure like we have for local variables. For example we
could make an indexable list of memory locations that we have used.

In this case, we would write a new entry at memory index 5, where we place whatever ex-
pression we took from the stack, in this case the constant literal expression with the value of 42.
We cannot store the value directly, because it could be something else that we cannot evaluate
during static analysis.

This approach has a critical issue, which we explain with another example.

1 (func $mem_test (result i32)
2 i32.const 5
3 i32.const 949679958
4 i32.store
5 i32.const 6 ;; important change
6 i32.load
7 return ;; what does it return?
8)

Listing 23: Store and load example

The code in listing 23 is very similar to the previous example with two key differences. First,
we store a bigger value in memory and second, we read from memory index 6 instead of index 5.
This raises the question: What value does the function return? At first glance, one might assume
it could be 0, because all memory is initialised with 0 and we have not written to memory index
6 yet. However, this is not the case. An i 32 value consists of 32 bits which means it has a length
of 4 bytes. It is important to remember that memory in Wasm is an array of uninterpreted bytes.
So if we write an integer to memory index 5, it starts at memory index 5, and the whole integer
gets written to index 6, 7 and 8 as well.

Wasm stores multi-byte values into memory in little-endian order. That means that lowest
significant bits get written into the first byte, which is the reverse way we usually think about
numbers where the most significant digits usually are on the left. With that knowledge we
are able to work out what our function returns. First, we convert our value into hexadecimal,
which helps us because 2 hexadecimal digits equal 1 byte. 949679958 into hexadecimal equals
0x389AF756. With the knowledge that bytes are stored in little-endian order and the fact that
bytes get initialised with zero, we can visualize the memory.

Figure 6.2: Memory detail

46

6.6 Linear memory

Figure 6.2 shows how each byte from memory index 5 to 9 is set at the end of the function. An
access to memory index 6 would give the value 0x00389AF7 which is 3709687 in decimal. When
we run the program, this is exactly the value that gets returned.

This example shows us that we need to treat each byte of memory individually. In the last
example we would set each byte from index 5 to 8 with a value. But the question now is to which
value do we set it? We cannot use a numeric value because in other cases it might not be a
constant value that we can statically determine. Any store instruction consumes an expression
from the stack, and we would need to take that expression and extract each individual byte. This
can be done in CBMC possibly with the extractbits expression. The type constructor accepts a
source expression, an index and a target type. The source expression would be the expression
we take from the stack, the index would be 0 for the first byte, 8 for the second and so on, and
the target type would be an uninterpreted 8-bit wide bitvector.

To model the memory in GOTO programs, we need an array that is defined in global scope.
The size of the array is the size of the memory in byte. The data type in uninterpreted bitvector
with a width of 8 bits.

During Instantiation all available memory gets initialised to 0. We could add this to our GOTO
program at the start, but that would create significant overhead. Many applications use only
a fraction of available memory, and initialising everything to 0 would be a needless task. Also
initialising the memory is more of a safety feature than a language feature. Most code should
not rely on the fact that the memory has been initialised, it should generally avoid unwritten
portions of memory.

In CBMC, accessing an array element that is not initialised creates an undeterministic choice:
The element can be of any value possible, similar to a program input. That means solver can
choose any value to satisfy the condition it tries to prove. This can be also an option, especially
if the memory is being imported. Maybe it would make sense to activate memory initialisation
using a command-line argument.

6.6.3 Memory instructions

Memory instructions are all instructions directly related to memory. In this section I will show
different memory instructions and how they can be translated into GOTO programs.

The most important instructions are load and store instructions. Each load and store instruc-
tion can have two optional static parameters, an offset and an alignment specifier. The offset
gets added to the index, so for example if an instruction reads memory at index 10 with an offset
of 4, the index that will be read is 14. The alignment specifier has no semantic meaning, but it
can help an interpreter or JIT-compiler make optimizations about the alignment of memory
access. We can ignore it.

The load instruction has the notation t.load where t is any number type. It takes an i 32 input
from the operand stack and reads the data at that index in memory, plus an optional offset. The
result of type t will be pushed to the operand stack.

To convert a load instruction we need to read each byte seperately, because we can only access
one element of the memory array using the index operator. Each byte then gets concatenated
into the target type. Listing 24 shows an example transformation of the i32.load instruction. It

47

6 Designing a Wasm frontend for CBMC

needs to be emphasized that the memory order is little-endian, but the concat operation accepts
the most significant operand first, so the indexing needs be reversed.

1 def transform_i32_load(
2 index: expr(uint32)
3 offset: uint32
4) -> expr(int32):
5 return concat(
6 [
7 memory[add(index, offset, const(3, uint32))],
8 memory[add(index, offset, const(2, uint32))],
9 memory[add(index, offset, const(1, uint32))],

10 memory[add(index, offset)]
11], int32
12)

Listing 24: Pseudocode transformation of i32.load

There exist special load instructions that load short integer types from memory and extend
them into larger ones. The notation is t.loadn where t is the target type and n is the bit width of
the integer that is read from memory. Since the value gets extended into a bigger type, there is a
difference regarding signed and unsigned valus. To convert this class of instructions, we need to
surround the extraction with an appropriate type cast.

The store instructions have the form t.store. They consume an i 32 index and a value of type
t from the operand stack and store it in memory. This needs to be converted into GOTO code
where each byte of memory gets assigned in an individual statement.

1 ASSERT not(greatereq(
2 add(index, offset, const(3, uint32)),
3 mul(memory_size, const(65536, uint32))
4))
5 ASSERT not(less(add(index, offset), 0))
6 ASSIGN memory[add(index, offset)]
7 := extractbits(value, 0, bv8)
8 ASSIGN memory[add(index, offset, const(1, uint32))]
9 := extractbits(value, 8, bv8)

10 ASSIGN memory[add(index, offset, const(2, uint32))]
11 := extractbits(value, 16, bv8)
12 ASSIGN memory[add(index, offset, const(3, uint32))]
13 := extractbits(value, 24, bv8)

Listing 25: Transformation of i32.store into GOTO code

Listing 25 shows an example of such a transformation. value is the value or expression that
gets stored in memory, i ndex is the index and memor y is the name of the global memory array.
At the beginning I have inserted 2 assertions, these perform a bounds check and report a failure

48

6.6 Linear memory

if the index is out of bounds. For that, we use the global variable memor y_si ze, which holds
the current size of the memory.

Similar to load instructions, store instructions of integers can store a smaller integer type in
memory. These kind of store instructions discard the most significant bits of the larger type. To
convert this, it is not necessary to type cast, we just need to extract the relevant bytes.

The instruction memory.size returns the current size of available memory in the unit of page
size. That requires us to hold a global variable that records the size of the memory in units of
page size. When we convert this instruction, we just access it. Whenever we need the value in
bytes, it just gets multiplied by 65536.

The instruction memory.grow consumes an i 32 parameter from the stack and increases the
available memory size by the amount of that value in unit of page size. In the background, the
runtime allocates more memory and zero-initialises it. We need to resize the memory array. For
this we need to redefine it and copy the contents. Then we increase the memory size global
variable. Since we read this variable during bounds checks, these will be always correct. If we
take the approach of memory initialisation, we need to initialise this new memory as well.

The memory.fill instruction fills memory sections with a single byte. It takes 3 i 32 values as
arguments. The first is the index that determines the first index of that memory section. The
second is the value these memory bytes will be filled with. It has type i 32, but it will be truncated
to an 8-bit value. The third argument is the length of that memory section.

To convert this into a GOTO program, we need to convert it into some kind of loop. Each
memory byte will be assigned using an assignment statement. The loop will be modeled using
a GOTO statement. Listing 26 shows how it may look like. The variable value is the value the
bytes get filled, i ndex is the start index and leng th is the length of that memory segment. The
length will be decremented each loop iteration. If the length is 0, the loop will terminate.

1 ASSERT not(greater(
2 add(index, length),
3 mul(memory_size, const(65536, uint32))
4))
5 ASSERT not(less(index, 0))
6 DECL fillvalue: bv8
7 ASSIGN fillvalue := extractbits(value, 0, bv8)
8 1: GOTO 2 IF equal(length, const(0, uint32))
9 ASSIGN memory[index] := extractbits(value, 24, bv8)

10 ASSIGN length := minus(length, const(1, uint32))
11 ASSIGN index := plus(index, const(1, uint32))
12 GOTO 1
13 2: (...)

Listing 26: Transformation of memory.fill into GOTO code

The memory.copy instruction copies data from one segment in memory to another. The
segments can be overlapping. It takes in three i 32 arguments, the first one is the starting index
of the destination segment. The second one is the starting index of the source segment and the
third one is the amount of bytes that get copied.

49

6 Designing a Wasm frontend for CBMC

To convert this, we can check if the memory segments overlap. If they do not, then we could
assign the target memory from the source memory directly. Otherwise, the data can be copied
into a temporary array, and then into the target segment.

6.6.4 Data segments

Usually memory gets initialised as with zero values, but modules can define data segments. Data
segments consist of values that a specific portion of memory gets initialised with.

They can either be active or passive. Active data segments get copied into memory during
module instantiation, while passive data segments get copied into memory with the memory.init
instruction.

Converting the memory.init instruction adds assignments to the GOTO program. Each
memory element gets filled with the value from the data segment.

Active data segments need to be copied into memory at the beginning of the GOTO program.

6.7 Structured code flow

6.7.1 Introduction

Any meaningful code cannot only contain a linear list of instructions that get executed in order.
To model real-world use cases code needs to perform conditional logic or loops. In one scenario
it needs to perform one block of code, and in other scenarios it needs to execute one other block
of code. In other situations one may write a block of code that gets executed n times, with n not
known at compile time.

Therefore any language needs to have constructs that help to branch control flow. On assembly
language level this is most often specified as a relative address to the current instruction pointer.
Higher-level languages have introduced code constructs that abstract this process into a more
human-understandable form in the form of structured blocks. Most prominent examples
include the if condition then ... else ... construct and the while condition do ... loop, where ... can
be substituted by any block of code, which has a defined end point. Programming with these
constructs is known as structured programming.

In model checking, we need a way to abstract these construct into a form that a solver can
understand and solve. CBMC helps us with the last step, but we need a way to lower all the code
into a GOTO program at first. Since guarded GOTO statements are the only way in GOTO pro-
grams to perform any sort of branching by definition, all the branch instructions and constructs
need to be transformed into the GOTO instruction.

6.7.2 Control-Flow Instructions in WebAssembly

First we need to explore the possibilities Wasm offers in regards to branching and loops. For this,
we cannot look at each instruction individually, since they are intertwined and work together.
Suprisingly, there is no kind of goto instruction, even though Wasm is intended as a low-level
bytecode close to machine level, where goto is just a direct jump to another instruction. Wasm
is more structured than traditional assembly language, and offers constructs to define blocks.
Then there are several branching instructions that break out of blocks.

50

6.7 Structured code flow

The 3 instructions to define blocks are the block, loop and if instructions. The block and loop
instruction define a block of code until a corresponding end instruction. The end instruction
does not do anything, it just serves as an informational marker to end the block. It can be even
questioned if it should be called an instruction, but it is defined as one and has an opcode. The
block and loop instruction are technically identical when they are standalone, but the difference
comes when we introduce branch instructions. Blocks can be nested, so that the outermost
block or loop instruction corresponds to the outermost end instruction. Validation ensures that
all blocks are well-defined.

The if instruction defines 2 blocks of code with corresponding else and end pseudo-instructions.
The if instruction consumes an i32 value from the operand stack and tests if it is equal to 0. If it
is not, then control flow executes the block between the if and else instructions, and after that
continues after the end instruction. If the value is 0, then the block after the else instruction
is executed. This makes it very similar to the higher-level if condition then ... else ... construct
found in many programming languages.

Listing 27 shows an example code using the if statement. In the second line the code takes the
decision, depending on the value of a local variable. If it is nonzero, then the code block from
lines 3 to 5 gets executed, otherwise the code from line 7 to 9.

1 local.get 1
2 if (result i32)
3 local.get 0
4 i32.const 5
5 i32.add
6 else
7 local.get 0
8 i32.const 10
9 i32.add

10 end

Listing 27: Example code using if ... else

There are 4 branching instructions, br, br_if, br_table and return. When these instructions are
executed, the control flow can break out of the current block. Blocks can forward- or backward-
jumping.

Inside a block defined using the block and if instructions, control flow after branching contin-
ues after the block. This is called a forward-jumping block. The branching instruction can be
thought of as a C-style break statement. Inside a block defined using the loop instruction, control
flow after branching continues at the beginning of the block. This is called a backward-jumping
block. In this case, the branching instruction can be thought of as a C-style continue statement.

Branching instructions need to explicitly define how many layers of blocks they break out of.
Instead of using labels, a number needs to be specified after the instruction. 0 means that the
branch only breaks out of its current block. Each number higher increases the breaking to one
more level.

Listing 28 shows an example. Line 5 shows a branching instruction, that breaks out of 2 levels
of nesting. I have annotated each block with the level of nesting, as seen from the perspective of

51

6 Designing a Wasm frontend for CBMC

the branching instruction. It clearly highlights that in this case the code flow would continue in
line 9.

1 block ;; level 3
2 block ;; level 2
3 block ;; level 1
4 block ;; level 0
5 br 2 ;; branching instruction
6 end ;; level 0
7 end ;; level 1
8 end ;; level 2
9 (; ... ;) ;; code continues here after branching

10 end ;; level 3

Listing 28: Example code showing a branching statement

The return instruction does not need a level label, since it implicitly breaks out of the outer-
most block. The outermost block in all cases is the function body, which means the instruction
ends the function, returning the operands that are left on the stack. The br instruction performs
an unconditional branch. The br_if instruction consumes an i32 operand, and performs a
branch if it is nonzero. The br_table instruction consumes an i32 operand, that acts as an index
to a list of level specifiers, and performs a branch to that target.

When a branching statement gets executed, the stack needs to be unwound to look like at
the beginning of the target block. This is because when breaking out of a block, the values that
instructions from that block have pushed to the stack are not going to get needed.

This behavior is similar to a function call. Each block has its own stack, and can consume
inputs or produce outputs. To indicate to the runtime that a block has inputs or return values,
the block needs a signature similar to a function signature. This signature maps any number of
input values to any number of result values. An example for this is in listing 27, where both code
blocks in the blocks described by the if and else statements add one value to the operand stack.
Because the code block changed the stack, it needs to have a signature indicating that the block
adds one i 32 value to the stack.

When the control flow gets to the start of the block, it pops its inputs off the current stack,
creates a new stack and pushes those on to it. After the execution of the block is finished
because it reached the end statement or a branch instruction, the result values get popped off
the stack. The new stack gets deleted, and the result values get pushed onto the original stack. If
a branching statement gets executed in a loop, the control flow jumps to the beginning of the
loop. In this case, the inputs of the block need to be on the operand stack before the branching
instruction, not the results.

6.7.3 Conversion into the GOTO language

Conversion of blocks and branches

We can now work out how we can represent these constructs in GOTO programs. We have to take
into account that blocks and branching statements do not only change control flow, but they

52

6.7 Structured code flow

manipulate the operand stack as well. Since the br instruction just jumps to a defined location,
we can replace with a goto statement. Likewise, the br_if instruction can be represented by a
conditional goto statement. The condition is taken from the operand stack, so it has to be the
result of the last operation.

Now the question is where these goto statements jump to. We know that in a normal block
control flow jumps to the end of the block, and in a loop block it jumps to the beginning of the
block. Since all blocks are well-nested, we can keep track of that.

During GOTO conversion, we go through the code twice. We start at nesting level zero, which
is the body of the function before any block definition. Then we go through the function one
instruction at a time. We keep track of any instruction that starts and ends a block. Each time we
enter a block, the nesting level increases by one, when we leave one, we decrease it by one.

In the second run, we look at the branching instructions. Since we kept track of where blocks
start, end, and what nesting level they have, we can see where control flow continues after
branching. Each branching instruction has an identifier n that declares how many levels of
block the instruction breaks out of. n = 0 indicates jumping out of the current block, so we can
that the block we jump out of for any branching instruction is the current nesting level minus n.
If the block is forward-jumping, the target of the GOTO is the end of the block, if the block is
backward-jumping, the target is the beginning of the block. We now have all the information to
successfully lower the branching instruction into GOTO statements.

Listing 29 shows an example involving structured code. Every block and branching instruction
is annotated with comments after the double semicolon. Two blocks are defined, one that is
forward-jumping in line 5 and one that is backward-jumping in line 6.

The branching statement in line 10 performs a conditional branch by one level. Since we
passed two block definition instructions, we are at that point at nesting level 2. The branch
therefore breaks out of the block with nesting level 1, which is a backward-jumping block. The
code flow continues after line 24.

The branching statment in line 22 performs an unconditional branch by zero levels, which
means out of the current block. The current block is a backward-jumping block, so the control
flow continues after line 6.

The next thing we have to think about is the unwinding of the stack. Detailed in section 6.2.2,
we keep the stack as an internal data structure, in which we store expressions.

During symbolic execution, we can mark specific points on the stack. If we encounter the
start of a block, we look at the block type and see if the block consumes any inputs. We know
that these values will be consumed by the block, so we mark the point of the stack below the
input operands. If a block has no input values, we mark the top of the stack.

This is the point to where we unwind to if the block ends. We also keep track of the nesting
level, so we know how many levels of stack to unwind.

When we get to a branching statement, we determine what type of block we break out of.
If we are in a forward-jumping block, we look if the block has any result types. If we are in a
backward-jumping block, we look if the block has any input types it consumes. We pop these off
the stack and remember them. Then we unwind the stack to the mark that is equal to the nesting
level we jump to. After unwinding, we push the result or input expressions that we remembered
back on our symbolic stack.

53

6 Designing a Wasm frontend for CBMC

1 (func $f (param i32) (result i32)
2 (local i32)
3 i32.const 0
4 local.set 1
5 block ;; start of block with nesting level 1
6 loop ;; start of loop block with nesting level 2
7 local.get 0
8 i32.const 2
9 i32.lt_u

10 br_if 1 ;; conditional branch
11 local.get 0
12 i32.const -1
13 i32.add
14 call $f
15 local.get 1
16 i32.add
17 local.set 1
18 local.get 0
19 i32.const -2
20 i32.add
21 local.set 0
22 br 0 ;; unconditional branch
23 end
24 end
25 local.get 0
26 local.get 1
27 i32.add)

Listing 29: Complex example for structured Wasm

Conversion of the if statement

The if ... else ... end construct can be transformed into a goto statement as well. These also count
as forward-jumping blocks, can contain branching instructions and consume or output values
to the stack. Therefore we have to treat them like blocks and take everything from the previous
paragraph into account. The if instruction works as a conditional goto statement as well. It
consumes the last operand on the stack, and if is zero, it jumps to the else instruction. If not, it
will execute the instructions in the block following the if, until the else instruction. So we have
to add an additional goto statement right before the else instruction, that does an unconditional
jump to the end of the block.

Conversion of the br_table statement

The last instruction we have not analyzed yet is the br_table instruction. This has been included
because there is no unstructured goto in Wasm. C and derivative languages offer the switch

54

6.8 Type conversions

construct. This matches a value against a list options. The insteresting property about it is that
every case needs to be ended with an explicit break, otherwise the control flow falls through to
the next statement, even if it did not match the input. Therefore the switch statement cannot
just be modeled with if and else, because there is the possibility to fall through to the next block.

To understand it better we look at the example C code in listing 30.

1 int switch_test(int a, int b) {
2 switch(a) {
3 case 0: b += 2; break;
4 case 4: b += 1;
5 case 7: b += 8; break;
6 default: b += 1;
7 }
8 return b;
9 }

Listing 30: Switch example in C

When we compile this into WebAssembly using Clang, we get the code shown in listing 31.

We see that the switch statement got replaced with four nested blocks. In the innermost block,
the control flow quickly reaches the br_table instruction at line 8. This consumes an operand
from the stack as input and uses it as an index into a list of values. The last value is always the
default one, in case the index is out of bounds. The value that is getting indexed is the level of
blocks the control flow out of, like in a normal br statement. There are 9 values because a value
is needed at index 0, 4 and 7. This gives 8 indexable values plus 1 default.

We notice that after each block, the logic of one of the case statements is performed. I have
annotated that with a comment before each part. At line 14, 26 and after the code finished at
line 31 the functions returns. After line 20 there is no return, and control flow continues. This
corresponds to the fall-through effect in the C code. The code block starting at line 16 is the
block we reach when we break out by level 1, which corresponds to index 4 in the lookup table
of the br_table instruction, which corresponds to the case-clause in the C code with no break.

So how can this be converted to a GOTO program. We just replace it with conditional GOTO
instructions, one for each case. In our example that would be 9 GOTO instructions. 8 handling
the cases when a is in each of [0;7], and one for any other value. The targets of the GOTO
statements have to be determined the same as any other branching instruction.

This is same way that CBMC uses when converting switch statements in C. It converts each
case into its own code block, and the logic which block gets executed when is done using
conditional goto statements.

6.8 Type conversions

We have four numeric non-vector data types, and Wasm offers instructions to convert values
from one to any other, and even some more. The GOTO language provides us with a type cast

55

6 Designing a Wasm frontend for CBMC

1 (func $switch_test (type 1)
2 (param i32 i32) (result i32)
3 block
4 block
5 block
6 block
7 local.get 0
8 br_table 0 3 3 3 1 3 3 2 3
9 end

10 ;; case 0: b += 2; break;
11 local.get 1
12 i32.const 2
13 i32.add
14 return
15 end
16 ;; case 4: b += 1;
17 local.get 1
18 i32.const 1
19 i32.add
20 local.set 1
21 end
22 ;; case 7: b += 8; break;
23 local.get 1
24 i32.const 8
25 i32.add
26 return
27 end
28 ;; default: b += 1;
29 local.get 1
30 i32.const 1
31 i32.add)

Listing 31: Converted Wasm code

expression. This expression does type conversions in the backend like a cast operation in C
would do. We need to see if this fits every case, or if we need to make changes and workarounds.

6.8.1 Integer to Integer

There are three instructions that convert between i32 and i64 variables.

The first one is i32.wrap_i64, this converts an i64 to an i32. The conversion is straightforward,
it cuts off the first 32 bits and keeps the rest the same. This is the same behavior in C, so we can
simply convert it into a type cast expression.

The instruction i64.extend_i32_u extends an unsigned i32 to an i64 by adding zeroes. On the
other hand, the instruction i64.extend_i32_s extends a signed i32 to an i64 by keeping the sign.

56

6.8 Type conversions

Because integer values can be ambiguous, we have to make sure to convert them to the right
signedness before performing the type cast. But other than that the behavior is the same as in C,
and we do not need to add anything else.

Then there are instructions of type t.extendn_s. These instructions take a value of type t and
sign-extend the last n bits to the whole length of the type. n can be 8, 16 or 32 as long as it is
shorter than the target type. These instructions are helping to support arithmetic of shorter bit
lengths within bigger types. These can be represented by a double type cast, first to the shorter
signed type, then to the signed version of the original type.

6.8.2 Float to Float

The instructions f64.promote_f32 and f32.demote_f64 convert data between both floating-
point types. These should behave according to the standard and will be handled correctly by a
normal type cast.

6.8.3 Integer to Float

Conversions from integer to float are done using the t.convert_in_s instruction. t denotes the
float type, n the length of the integer type and s if it is signed or unsigned. All these combinations
make for 8 individual instructions. This should also be handled properly by a standard type cast.

6.8.4 Float to Integer

Conversions from float to integer types can be made in two ways. The first is a normal conversion.
This would try to find an integer value that is equal to the float value rounded towards zero. If
the float value is outside the number range of the integer type or an infinity or NaN, then the
operation results in a trap. The second way is a saturated conversion. This ensures that the
operation does not trap. It simply finds the nearest integer value that is possible, for example
positive infinity would result in INT_MAX. NaN gets converted by definition to 0.

The normal conversion instruction has the form t.trunc_fn_s, with t being the integer type, n
the width of the float type and s the signedness specifier for the resulting integer type. We have
to add checks because if the float value cannot be represented as an integer. First we add an
assertion to check that the value we convert is greater than or equal to the float representation
of INT_MIN. We also have to assert that the value is smaller than or equal to INT_MAX. These
two assertions also check for NaNs, since every comparison to a NaN is false per definiton. If the
assertions do not cause verification to fail, then a normal type cast is sufficient.

The saturated float-to-int conversion has the form t.trunc_sat_fn_s, with t being the integer
type, n the width of the float type and s the signedness specifier for the resulting integer type.
Like the normal conversion, this results in 8 individual instructions. Instead of adding assertions,
we need some conditional expressions to cover all the cases. We can use nested if expressions to
handle all the cases. If the value is higher than INT_MAX, then the result is INT_MAX. Otherwise,
if the value is lower than INT_MIN, then the result will be INT_MIN. The comparisons will have to
be done in the floating-point type, and for the integer values we can return constant expressions.
Lastly, we have to check for NaN, and if it is NaN, then the result is 0. We can use the isNaN
expression for this. If none of the conditons were satisfied, we perform a normal type cast.

57

6 Designing a Wasm frontend for CBMC

6.8.5 Reinterpretation cast

Between an integer and a floating-point value of the same bit width we can perform a rein-
terpretation cast. This means that we do not change the data underneath and just interpret
the bit pattern as the target type. In C, this is not a native operation and usually gets achieved
by a pointer cast. We could transform this into a sequence of address-of expression, type cast
expression and dereference expression, but it would be a very unelegant solution.

A better way is to cast to a generic bitvector, which is possible in CBMC. We then cast the
generic bitvector into the target type.

6.9 Reference data

References are a data type in Wasm that references another object. It is intended to be a safe
alternative to pointers.

A reference can either point to valid object or be null. To ensure reference safety, references
can not be casted from or into other types. This also means that reference cannot be stored
in linear memory, because then it would be possible to reinterpret the data. Therefore Wasm
defines a data structure called a table that can hold references.

Wasm 2.0 supports two types of references: Function references and external references.
Function references are references to functions. They are used whenever functions need to be
as a first order type, for example passing functions as parameters. External references point to
objects owned by the embedding environment. Wasm cannot interact with them directly, but
they can be for example passed as an argument to an imported function.

There is a special value for references which is a null reference. A null reference can be created
with the instruction ref.null.

References can be stored in tables. Tables are a replacement for memory, because references
are an opaque data type and are not able to be casted into any other type. If references could
be stored in memory, then it would be possible to obtain their bit pattern, cast them into other
types and do things like pointer arithmetic. That is the reason why tables exist, and similar to
memories it is possible to read and write references from and to them. A detailed look into tables
and table instructions is given in section 6.9.4.

The interesting question here is to what type we convert references to in our program. We
cannot use any existing CBMC type because any reference-like data type in the CBMC framework
(like those that are used to model Java or C++ references) inherits from the pointer data type,
which is modeled as a bitvector. In Wasm, we cannot obtain the bit pattern of references, so it
does not make sense to model them as a bitvector. The best way seems to be to create a new
type for Wasm references, and subtypes for each type of reference.

6.9.1 Function references

The data type for function references is funcref. Function references are needed whenever
functions need to be called indirectly. Instead of a direct function call, the function can be called
through its reference. This makes functions indirectly first-class values and it is for example
possible to create functions that take other functions as input.

58

6.9 Reference data

Function references can be created with the ref.func instruction. The instruction takes a
single static argument, which is the index of the function that will be referenced. The resulting
reference is then pushed to the stack.

Functions can be called through its references with the call_indirect instruction. This in-
struction has two static parameters, and one it takes from the operand stack. The first static
parameter is the index of the table that holds the reference. A Wasm module can declare multiple
tables, starting from index 0. The second static parameter is the index of the function type. This
ensures type safety. The operand that gets taken from the stack is an i 32 index into the specific
table. The reference at that index gets dereferenced and the specific function is called.

First it is important that many things can go wrong and actually result in a trap that terminates
the program. Similar to memory access, the table index can be out of bounds. Also the reference
can be a null reference or the type of the actual function does not match the type parameter that
is declared in the second static parameter. It is therefore a good idea that we add assertions that
cover these three cases before any indirect function call.

The best way to transform this is by modeling the table as an array, similar to linear memory.
When we transform the call_indirect instruction, the first part will be an access to the table array.
After we have parsed the WebAssembly module, we know about all functions and their type
signature. Whatever data structure will be used to store this data, pointers to this information
can be stored in the table array.

Translating indirect function calls is difficult, because the GOTO offers no direct replacement
for dereferencing a function reference or pointer. What CBMC does it replaces it with a chain of
checks.

Suppose we have a C program with three functions, f , g and h, and a function pointer p.
An indirect function call to p gets replaced by a chain of if statements, where the value of the
function pointer is compared to an address of each defined function. If the value matches, then
this function will be called. Listing 32 shows how that looks. I have left out any further checks,
such as checking that the function pointer is valid.

1 void f();
2 void g();
3 void h();
4 void (*p)();
5

6 // ...
7

8 (*p)();
9 // gets replaced with:

10 if (p == &f) f();
11 else if (p == &g) g();
12 else if (p == &h) h();
13

Listing 32: How CBMC replaces function pointers

59

6 Designing a Wasm frontend for CBMC

In our Wasm frontend, we can introduce a similar logic. We can test through every function
and see if the function reference points to it. If the signature mismatches, it will introduce a trap.
Therefore we only have to check the functions with the correct signature.

6.9.2 External references

External references in Wasm have the data type externref. These refer to objects owned by the
hosting environment. In the case that Wasm runs inside a JavaScript environment, then external
references may refer to any kind of JavaScript object.

Since their only real use is in imported functions, there is no need to convert them or include
them in our program.

6.9.3 Null reference

The null reference is a special reference that indicates that this reference points to no object.
It is the default value for all reference types and can be created using the ref.null instruction.
To handle null references, we need to add internal information to the reference type we use
internally whether the reference is null or not.

The instruction ref.is_null checks if a given reference is null. If it is, we return 1, otherwise 0.
To do this in our program, we just read that internal information if the value is null.

Null references are important to verification as they are a common source of bugs. For example
trying to call a function reference that turns out to be null triggers a trap.

6.9.4 Tables and elements

A table is a special memory that holds values of type reference. Each table can only hold one
type of reference.

We can model tables using the same logic as we do with memories. Instead of holding bytes,
the array consists of references.

A Wasm module can define elements. Elements are used to initialize table entries, similar
to how data segments are used to initialize memory segments. Each element can be declared
active or passive. An active element initializes its table entry during module instantiation, while
a passive element does it on demand when executing the table.init instruction.

If we want to have the correct state of table entries, we need to add code at the beginning of
our GOTO program that initializes table entries with active elements.

6.10 Global variables

Global variables are variables that can be accessed from anywhere in the program. They behave
similar to local variables, but they never go out of scope.

Global variables need to be declared in a special section of the Wasm module. Each global
variable has a type, a mutability qualifier and an initialisation value. The mutability qualfier
specifies if the global variable is constant or mutable. We can ignore this because module
validation ensures that there are no changes to mutable variables.

60

6.11 Miscellaneous instructions

We can handle them similar to how local variables are handled, by storing them in an internal
table. First we set the values to a constant expression that represents the initial value. The
global.set instruction changes the value of a global variable with the value from the operand
stack. In this case we replace the value in our table with the expression we take from the stack.
The global.get instruction reads the value from the global variable and places it on the stack.
Like with local variables, we read from our table and place the expression on our simulated
stack.

6.11 Miscellaneous instructions

There are some instructions that do not fit in any of the above categories. These will be discussed
here.

The drop instruction pops the top element from the operand stack. This is easy to implement,
we just need to delete the topmost element in our symbolic stack.

The select instruction consumes three values from the operand stack. The result is either first
one or the second one, depending on if the third argument is 0. The result gets pushed back to
the stack.

In our conversion, we need to replace the three top elements from our symbolic stack with
a ternary if expression. The condition is if the third argument is equal to 0. The other two
expression are the second and third agrument to the if expression.

61

7 Practical considerations

In the last chapter we have deeply analyzed the Wasm bytecode and how to transform it to work
with the CBMC backend. In this chapter, we look at issues that get relevant if the project would
be implemented. This ranges from parsing, to variable naming and assertions. We look at each
aspect individually and try to find solutions.

7.1 Parsing

Parsing is the step in our frontend where we read the Wasm binary file and convert it into an
internal structure. It would be impractical to parse the binary directly into GOTO programs,
because this is not a linear process, and we would have to read the binary back in from the
beginning. Instead it is easier to parse the binary code into an abstract syntax tree, before we
transform this into a GOTO program.

In this section I will explain the general structure and some technical aspects of binary Wasm
modules and how these can be represented in an abstract syntax tree.

7.1.1 General structure of a Wasm binary

A Wasm module is a binary format, that means it is not easily human-readable with for example
a text editor.

All the data that the module uses needs to be encoded. Integers are encoded using the LEB128
(little endian base 128) format. In this format, integers are split into groups of 7 bits, starting
with the least significant bits. Each group starts with an additonal bit set to 1, except the last
group, which starts with 0 to mark the last byte. Floating-point numbers are encoded directly
into IEEE 754, and character sequences are encoded using UTF-8. These are needed for example
to refer to imported symbols by name.

The binary always starts with the byte sequence 0x0061736D, which is the magic number. The
magic number is used so that operating systems and programs can identify the file type from
the first bytes. In ASCII code, the magic number can be read as the NULL character followed by
“asm”.

The next four bytes contain the version of the binary, which is currently 1. If there will be
backward-incompatible changes to the binary format the number will increase, but it is currently
not planned.

After that the file is divided into sections. Each section starts with a 1-byte section id and an
unsigned 32-bit integer value specifying the size of the section contents in byte. By utilizing this
size information we can break down the binary into each section very quickly.

In the next subchapters I will look at the individual sections and explain why their contents
are useful for our frontend.

63

7 Practical considerations

Type section

The type section contains an array of function type definitions. A function type definition is a
mapping of input types to result types.

We will need this information because some constructs refer to one of this type definitions
using the index. An example would be indirect function calls, where the expected type is defined
using an index into of this array.

Function section

The function section defines an array of function definition. Each function definition consists
only of an index into the type section. The rest of the function, the local variable definitions and
the actual code is declared in the code section.

Table section

The table section declares tables. Each table is declared with a reference type and a size.

This is helpful so that we can verify that access to tables using an index is not out of bounds.

Memory section

The memory section defines memories. A memory is defined using an initial size and an optional
maximum size. In the current version of Wasm only one memory definition is allowed.

The useful information for us is the initial memory size, which we will need to use for bounds
checks on memory access.

Global section

The global section defines global variables and their types. It may be possible to gain information
about global variables out of the context where they are used in instructions because each
access instruction uses a static index, but it is probably easier to read this section and store the
information during parsing.

Start section

The start section defines an optional start function. The contents of this section is just an index
into the array of functions. The start function gets executed when the module is instantiated,
so it is important to know what it does because it can change for example global variables or
memory contents, which we have to keep track of.

Element section

The element section defines elements, which are initial table entries. Elements can be active,
that means they load themselves into tables during instantiation, or passive, that means they
get copied into tables by calling an instruction. Parsing the element section is crucial to know
some certain contents of tables, for example during indirect function calls.

64

7.2 User-defined assertions

Code section

The code section defines the local variables and the code for each function. The function
signatures and indices are defined in the function section, and the code section has the same
number of elements.

The code for each function consists of a list of instructions. Each instruction is differentiated
using an opcode. The opcode is in most cases a single byte. Since that would limit the number
of different instructions to 256, the special opcodes 0xFC and 0xFD are being followed by an
unsigned 32-bit integer that adds an additional value to distinguish instructions.

Some instructions contain additional static parameters, these are encoded directly after the
opcode.

Data section

The data section defines data items, which are used to initialize memory segments. Similar to
elements, data items can be either active or passive, active data items get copied into memory
during instantiation.

Knowing the contents of this section, we can keep track of the initial state of any memory.

Import and export sections

The import and export sections define functions, globals, tables or memories that are either
imported from the host environment or get accessible to the host environment after the module
has been instantiated.

This creates a problem: If for example a function that we want to check for errors calls an
important function or uses imported memory, we cannot know what will happen. I discuss this
issue in more detail in section 7.3.

7.2 User-defined assertions

Assertions are important in bounded model checking because they add constraints to a program.
What we essentially look for is errors in a program and to find errors we have to define erroneous
states. CBMC has the ability to add automatic assertions in many cases, for example when a
division by zero could be possible.

But the real advantage of tools like CBMC is that the user can place constraints himself with
the assert operation. The result of this that CBMC can not only check for language errors and
undefined behavior, but also check the program against a specification. The program can be
specified as detailed as the user wants using assertions.

1 int success = do_something();
2 assert(success);

Listing 33: Example of a user-defined assertion

65

7 Practical considerations

Listing 33 shows an example of a user-defined assertion in a snippet of a C program. The
procedure do_something() can fail and therefore returns a value indicating that the operation
was successful. We then assert that the value does not indicate an error. If we input this code
into a bounded model checker, it will try find states in which the assertion fails.

The assert statement is something that is common many programming languages. Usually it
stops execution immediately. The semantics – defining an expected state – are perferct for usage
in bounded model checking to define erroneous states.

In Wasm there is no statement directly equal to an assertion statement in C. The only instruc-
tion that is similar is the unreachable instruction. This instruction takes no arguments, it just
unconditionally triggers a trap which results in immediate termination of the Wasm module. To
mimic an assert statement, one could possibly use the unreachable statement together with an
if-statement. This is impractical, since it would imply that the Wasm bytecode gets written by
hand.

We can look at some compilers that target WebAssembly and see how they translate the
assertion statement. The Emscripten toolchain translates the C assert statement into a call to
an imported function. The imported function is defined in the compiled JavaScript code and
throws an exception. The name of this function is “__assert_fail”. We could detect this particular
function call in our frontend and convert it to an assertion statement.

In Rust there is also an assert macro. The resulting Wasm code consists of internal functions
that perform cleanup and debugging tasks. At the end of the function chain the unreachable
instruction is executed, triggering program abortion. This can be converted into a GOTO
program without any tweaks, and we could replace the unreachable statement with ASSERT
false.

7.3 Shared data with host environment

Wasm modules can share data with its host environment through imports and exports. These
can contain functions, memories, tables and global variables. If we import them, we cannot
know its contents, so we cannot verify anything that it does. This is similar to calling a function
in C that only has a forward declaration, but no definition. Another example would be variables
in C declared with the extern keyword.

The best way to resolve this is to just assume these values or function can return anything.
This can be done by imposing no constraints on that data, and then the solver tries to find the
most suited value for its proof.

7.4 Symbol names

Since Wasm is a bytecode that is optimized for execution instead of readability, it does not
refer to language elements with a symbolic name. Instead it keeps all language elements and
structures and uses indices on that structure. This is impractical, since we want to have a trace
of a possible counterexample and see how it affects the program logic.

The solution is that Wasm supports officially a section in the binary bytecode that is reserved
for debugging information, including symbol names. This section gets created by compilers

66

7.4 Symbol names

using a flag that triggers the inclusion of debugging information. We can parse this section if
available and have access to all available names.

67

8 Summary

I now want to summarize the previous chapter’s contents. The project was to design a frontend
for the Wasm bytecode language in the CPROVER framework.

We started by introducing the GOTO language as the target for our frontend. In chapter 5 we
defined the semantics of the GOTO language, so that we had a formal base.

In chapter 6 we took a close look at Wasm bytecode and its components and how it can be
translated into the GOTO language. We achieved the following results:

Operand stack Wasm bytecode is a stack machine, and we have to transfer that into the more
imperative GOTO language. To do that, we need to have an internal symbolic representation
of the operand stack, where we store intermediate expressions. As an example, the addition
instruction pops two values off the stack and pushes the result back on it. What we do is we
create an addition expression that replaces the two top expressions from the stack. Each of these
expressions is in input to the addition.

Local variables Local variables can store data local to a function. We can convert them into
variables in the GOTO program and keep track of them in an internal table.

Multiple return values The GOTO language does not support multiple return values for func-
tions, but WebAssembly does. To circumvent this, we can combine the return values in a single
structured type and deconstruct it in the calling function.

Integers Integers in Wasm are 32-bit and 64-bit wide bitvectors. The type system in Wasm does
not differantiate between signed and unsigned interpretations. If an instruction has different
semantics for unsigned and signed values, there exist two variants of that instruction. This
prevents us from reliably placing overflow checks, but in Wasm, overflow is defined using
wrapping arithmetic.

Division by zero and division overflow can produce a trap, which means the program can
terminate. It is therefore a good idea to add assertions to detect that. Most integer operations can
be converted into built-in expression types, while more complex operations can be converted
using nested expressions.

Floating-point numbers Floating-point numbers in Wasm can be 32 and 64 bit wide and
implement the IEEE 754 standard. In other languages, many operations on floating-point
numbers are not built into the language, they are library functions instead. For these languages,
CBMC provides its own implementation of common standard library features. In Wasm, there is
no standard library so these functions, like taking the square root of a number, are built into the
language. We can either provide “library” functions by implementing these operations using
simpler instructions, or extend the GOTO language and let the solver resolve the functionality,
which exists in some cases.

69

8 Summary

Vector data Wasm provides a data type for vector data, which consists of 128 bits. This bitvector
can represent multiple lanes of data of a smaller type. There are instruction that perform
operations on that data, multiple values at a time. These are called single-instruction, multiple-
data instructions.

To convert those instructions, we need to decompose the vector into each lane. We then
perform the operation on each lane. Since all these operations are independent of one another, it
does not matter if we perform them at the same time or one after the other. Then we concatenate
the indivual parts back into the vector.

To represent the vector we could have used arrays, like some existing CBMC functionality for
vectors in the C language does. This would be practical in some cases, but impractical in others.
I believe that representing them as a bitvector of width 128 is a better choice.

Linear memory The memory model of WebAssembly consists of a global array of bytes. There
is no need for memory allocations, all available memory is permanently accessible.

To model memory we treat is an array of 8-bit wide bitvectors. Each instruction that reads
from and writes to memory need to address each index individually, since memory accesses can
potentially overlap.

An out-of-bounds memory access in Wasm causes a trap which terminates the program. It
is important to avoid that, and before each memory access we should add assertions to the
GOTO program to detect possible errors. For this, we need to keep a variable that remembers
the current size of available memory.

Available memory gets initialised using 0 values. In some cases it may make sense to add this
at the beginning of the resulting GOTO program, in some cases it does not. The best way may be
to make it configurable.

Structured code flow WebAssembly offers structured code constructs. It is possible to define
blocks, where special instructions called branching instructions “break out” of.

To convert this into the GOTO language, we need to reduce those constructs into GOTO
statements. This can be done using static analysis.

Type conversions It is possible in WebAssembly to convert values between all numeric data
types. In most cases, the semantics of the conversion is equivalent to the semantics of the type
cast expression in the GOTO language, which is inspired by the semantics of casting in the C
language.

In some cases we need to add assertions because type conversion can trap, especially conver-
sions from floating-point to integer types.

A reinterpretation cast changes the type of a value while keeping the bit pattern the same. This
can be done by casting the value to an uninterpreted bitvector, and then casting it to the target
type.

Function references Function references can be used to call functions indirectly, similar to
function pointers in other languages. To include them in the GOTO language we have to create

70

a new data type, because all reference types in the GOTO language are bitvectors, but Wasm
defines that the bit pattern of references cannot be observed.

To convert indirect function calls into the GOTO language, we have to compare the value of
the reference to each available function that matches that type signature. If it matches, then we
perform a function call.

We have looked at some other discussion points not directly related to WebAssembly semantics
in chapter 7. Here are the topics we talked about:

Parsing To to any kind of model checking on WebAssembly bytecode, we have to parse it in an
internal structure first. The bytecode is specified in a binary format.

A binary Wasm module consists of multiple sections, for example types, imports, function
signatures and code. We have to read each of these sections, because each one is important for
our frontend in one way or another.

The code is encoded using opcodes. Each opcode represents a different instruction. Therefore
to parse the code, we need to have some kind of table, that we can use to translate the opcodes
into readable instructions.

User-defined assertions WebAssembly does not offer an assert statement like C or Java do.
Therefore we have to do a work-around to let users define assertions in their code.

One way is to let users edit the Wasm code by hand and place unreachable instructions.
Another way is to look at common WebAssembly compiler toolchains and see how they convert
the assert statment from the source language. Whatever they put in the Wasm code, we detect
and convert it to an assertion in the GOTO program.

Shared data with host environment WebAssembly code is not designed to run for itself, it is
usually embedded into a host environment, such as a JavaScript engine. It can communicate
with it by importing and exporting functions and data. That means we cannot know the value or
contents of this data for sure.

We solve this by not putting any constraint on that data. It can be any value possible, so we do
not assume it has a defined value.

Symbol names WebAssembly is a machine-readable bytecode and does by default not include
symbol names such as function names. After verification, we want to understand how the
program reached a state of error, and function names are very helpful.

To include symbol names in our output, we need compile the WebAssembly code with debug-
ging information, and during parsing we need to process that information.

71

Bibliography

[1] B. Alliance. Github - WebAssembly/WASI: WebAssembly System Interface. 2024. URL: https:
//github.com/WebAssembly/WASI (visited on 12/19/2024).

[2] C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org. 2016.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. “Symbolic Model Checking without BDDs”. In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by W. R. Cleaveland.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. ISBN: 978-3-540-49059-3.

[4] J. R. Burch, E. M. Clarke, D. L. Dill, and J.-N. Hwang. “Symbolic model checking: 1020 states
and beyond”. In: Logic in Computer Science. 1989. URL: https://api.semanticscholar.
org/CorpusID:124743249.

[5] E. Clarke, D. Kroening, and F. Lerda. “A Tool for Checking ANSI-C Programs”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by K. Jensen and A. Podelski.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. ISBN: 978-3-540-24730-2.

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic verification of finite-state con-
current systems using temporal logic specifications”. In: ACM Trans. Program. Lang. Syst.
(1986).

[7] L. Cordeiro, P. Kesseli, D. Kroening, P. Schrammel, and M. Trtik. “JBMC: A Bounded Model
Checking Tool for Verifying Java Bytecode”. In: Computer Aided Verification (CAV). LNCS.
Springer, 2018. ISBN: 978-3-319-96144-6.

[8] B. Farias, R. Menezes, E. B. de Lima Filho, Y. Sun, and L. C. Cordeiro. “ESBMC-Python: A
Bounded Model Checker for Python Programs”. In: Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis. ISSTA 2024. Vienna, Austria:
Association for Computing Machinery, 2024. ISBN: 979-8-40070-612-7. DOI: 10.1145/
3650212.3685304. URL: https://doi.org/10.1145/3650212.3685304.

[9] D. Gandluri, T. Lively, and I. Stepanyan. Fast, parallel applications with WebAssembly
SIMD. 2020. URL: https://v8.dev/features/simd (visited on 12/02/2024).

[10] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, et al. “Bringing the web up
to speed with WebAssembly”. In: SIGPLAN Not. 6 (June 2017). ISSN: 0362-1340. DOI:
10.1145/3140587.3062363.

[11] D. I. O. Herrera. “Verification of WebAssembly programs”. In: (Feb. 2020). DOI: 10.25949/
19444358.v1.

[12] ISO/IEC. Programming languages - C, Committee Draft September 7, 2007. en. Standard
ISO/IEC 9899:TC3. International Organization for Standardization, 2007. URL: https:
//open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf.

[13] D. Kroening and O. Strichman. Decision Procedures. An Algorithmic Point of View. 2nd ed.
Berlin, Heidelberg: Springer-Verlag, 2016. ISBN: 978-3-662-50497-0. DOI: https://doi.
org/10.1007/978-3-662-50497-0.

73

https://github.com/WebAssembly/WASI
https://github.com/WebAssembly/WASI
https://api.semanticscholar.org/CorpusID:124743249
https://api.semanticscholar.org/CorpusID:124743249
https://doi.org/10.1145/3650212.3685304
https://doi.org/10.1145/3650212.3685304
https://doi.org/10.1145/3650212.3685304
https://v8.dev/features/simd
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.25949/19444358.v1
https://doi.org/10.25949/19444358.v1
https://open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
https://open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
https://doi.org/https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/https://doi.org/10.1007/978-3-662-50497-0

Bibliography

[14] D. M. Mazarro. “Specification and verification of WebAssembly programs”. MA thesis.
Universidad Politécnica de Madrid, 2023.

[15] R. Menezes, M. Aldughaim, B. Farias, X. Li, E. Manino, et al. “ESBMC 7.4: Harnessing
the Power of Intervals”. In: 30th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’24). Lecture Notes in Computer Science.
Springer, 2024. DOI: https://doi.org/10.1007/978-3-031-57256-2_24.

[16] K. Project. The Kani Rust Verifier. 2024. URL: https://model-checking.github.io/
kani/ (visited on 12/18/2024).

[17] K. Song, N. Matulevicius, E. B. de Lima Filho, and L. C. Cordeiro. “ESBMC-Solidity: An SMT-
Based Model Checker for Solidity Smart Contracts”. In: 2022 IEEE/ACM 44th International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion). 2022.
DOI: 10.1145/3510454.3516855.

[18] A. VanHattum, M. Pardeshi, C. Fallin, A. Sampson, and F. Brown. “Lightweight, Modular
Verification for WebAssembly-to-Native Instruction Selection”. In: Proceedings of the 29th
ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1. ASPLOS ’24. La Jolla, CA, USA: Association for Computing
Machinery, 2024. ISBN: 9798400703720. DOI: 10.1145/3617232.3624862. URL: https:
//doi.org/10.1145/3617232.3624862.

[19] C. Watt. “Mechanising and verifying the WebAssembly specification”. In: Jan. 2018. DOI:
10.1145/3167082.

74

https://doi.org/https://doi.org/10.1007/978-3-031-57256-2_24
https://model-checking.github.io/kani/
https://model-checking.github.io/kani/
https://doi.org/10.1145/3510454.3516855
https://doi.org/10.1145/3617232.3624862
https://doi.org/10.1145/3617232.3624862
https://doi.org/10.1145/3617232.3624862
https://doi.org/10.1145/3167082

	Contents
	1 Introduction
	2 Background
	2.1 WebAssembly
	2.2 Program Verification
	2.2.1 Introduction
	2.2.2 Model Checking
	2.2.3 SAT solvers
	2.2.4 Bounded Model Checking
	2.2.5 SMT solvers

	2.3 The CBMC framework

	3 Related work
	3.1 Bounded model checking for different languages
	3.2 Verification of WebAssembly programs

	4 Methodology
	4.1 Approach
	4.2 Tools and Techniques

	5 CBMC and the GOTO language
	5.1 Introduction
	5.2 The GOTO language
	5.2.1 Introduction
	5.2.2 Types
	5.2.3 Statements
	5.2.4 Expressions

	6 Designing a Wasm frontend for CBMC
	6.1 Introduction to WebAssembly Bytecode Format
	6.2 Functions
	6.2.1 Introduction
	6.2.2 Operand stack
	6.2.3 Local Variables
	6.2.4 Return values

	6.3 Integer Data
	6.3.1 Introduction
	6.3.2 Shorter integer types
	6.3.3 Overflows and undefined results
	6.3.4 Integer operation instructions

	6.4 Floating Point Data and Instructions
	6.5 Vector data and SIMD instructions
	6.5.1 Introduction
	6.5.2 Implementation considerations
	6.5.3 Vector instructions

	6.6 Linear memory
	6.6.1 Introduction
	6.6.2 Linear Memory Model in WebAssembly
	6.6.3 Memory instructions
	6.6.4 Data segments

	6.7 Structured code flow
	6.7.1 Introduction
	6.7.2 Control-Flow Instructions in WebAssembly
	6.7.3 Conversion into the GOTO language

	6.8 Type conversions
	6.8.1 Integer to Integer
	6.8.2 Float to Float
	6.8.3 Integer to Float
	6.8.4 Float to Integer
	6.8.5 Reinterpretation cast

	6.9 Reference data
	6.9.1 Function references
	6.9.2 External references
	6.9.3 Null reference
	6.9.4 Tables and elements

	6.10 Global variables
	6.11 Miscellaneous instructions

	7 Practical considerations
	7.1 Parsing
	7.1.1 General structure of a Wasm binary

	7.2 User-defined assertions
	7.3 Shared data with host environment
	7.4 Symbol names

	8 Summary
	Bibliography

